
D2.4.3
Final Reference Platform and Test Case

Specification
Project number: 257243

Project acronym: TClouds

Project title:
Trustworthy Clouds - Privacy and Re-
silience for Internet-scale Critical Infras-
tructure

Start date of the project: 1st October, 2010

Duration: 36 months

Programme: FP7 IP

Deliverable type: Prototype

Deliverable reference number: ICT-257243 / D2.4.3 / 1.0
Activity and Work package contributing
to deliverable: Activity 2 / WP 2.4

Due date: September 2013 – M36

Actual submission date: 7th October, 2013

Responsible organisation: POL

Editor: Gianluca Ramunno

Dissemination level: Public

Revision: 1.0

Abstract:

This deliverable reports the concept, ar-
chitecture and testing of the final TClouds
Platform as a collaborative work of the
other Activity 2 workpackages.

Keywords:
platform, subsystems, prototypes, mod-
ules, trustworthy infrastructure, testing,
large-scale, high-security

D2.4.3 – Final Reference Platform and Test Case Specification

Editor

Gianluca Ramunno (POL)

Contributors

Tony Cutillo, Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia (POL)

Alexander Buerger, Norbert Schirmer (SRX)

Alysson Bessani, Marcel Henrique dos Santos (FFCUL)

Sören Bleikertz, Zoltan Nagy (IBM)

Imad M. Abbadi, Anbang Ruad (OXFD)

Johannes Behl, Klaus Stengel (TUBS)

Mihai Bucicoiu, Sven Bugiel, Hugo Hideler, Stefan Nürnberger (TUDA)

Disclaimer
This work was partially supported by the European Commission through the FP7-ICT program
under project TClouds, number 257243.

The information in this document is provided as is, and no warranty is given or implied that the
information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. The opinions expressed in this
deliverable are those of the authors. They do not necessarily represent the views of all TClouds
partners.

TClouds D2.4.3 I

D2.4.3 – Final Reference Platform and Test Case Specification

Executive Summary

Cloud computing is an emerging technology devoted to outsource IT infrastructures, from SME
needs to large-scale computing and storage. However, organizations and industries that make
use of critical infrastructure are cautious to move towards cloud infrastructures since they still
experience security and privacy breaches.

The TClouds project aims at facilitating the shift of computing paradigm for critical in-
frastructures by increasing the robustness of Infrastructure as a Service (IaaS) cloud platforms
through subsystems that can be combined and used in different scenarios: private or public
clouds, commodity or native TClouds clouds, or mixed scenarios. TClouds also provides build-
ing blocks as part of a secure Platform as a Service (PaaS) for application specific needs.

This deliverable is a compendium of the work done in workpackages 2.1, 2.2 and 2.3. The
subsystems conceived, designed, and developed in those workpackages, have been framed into
the TClouds Platform v2.1, a comprehensive secure cloud computing ecosystem comprising
two different prototypes (i.e. complex groups of integrated subsystems) at the IaaS layer and
several modules (i.e. single subsystems and simple aggregations of some of them) at the PaaS
layer. With these two alternative infrastructure prototypes we can cover the needs of a wide
range of application scenarios from private or community clouds with high security demands to
large-scale public clouds. With the appropriate selection of PaaS modules, the applications can
satisfy security requirements that cannot be managed at the IaaS and that have to be dealt with
by the applications themselves.

The TClouds Platform described in this deliverable has the objective to satisfy the require-
ments set by European and national laws on data protection (WP1.1) and by two benchmark
application scenarios, health-care (WP3.1) and energy related (WP3.2) applications. Such re-
quirements and how the TClouds subsystems satisfy them are reported in the previous deliver-
able D2.4.2 [S+12a]. The successful validation of the TClouds Platform against such require-
ments, on a per-subsystem basis and from Activity 3 applications perspective, is reported in the
deliverables D3.3.3 [Abi13] and D3.3.4 [Abi13].

This deliverable is organized in three parts. Part I describes the concept, the architecture and
the instantiations of the TClouds Platform as a result of the evolution that took place throughout
the project. Part II includes the documentation related to the testing of the TClouds Platform
components. Finally, Part III reports the evolution of the TClouds platform concept and of
the subsystems throughout the project and focuses on the programming, installation and con-
figuration documentation for the released software APIs and to the code availability of each
subsystem.

TClouds D2.4.3 II

D2.4.3 – Final Reference Platform and Test Case Specification

Contents

1 Introduction 1
1.1 TClouds — Trustworthy Clouds . 1
1.2 Activity 2 — Trustworthy Internet-scale Computing Platform 1
1.3 Workpackage 2.4 — Architecture and Integrated Platform 2
1.4 Deliverable 2.4.3 — Final Reference Platform and Test Case Specification . . . 4

I TClouds Platform v2 7

2 The TClouds Platform
Concept, Architecture and Instantiations 8
2.1 Introduction . 8
2.2 Concept of platform . 9
2.3 Amazon AWS architecture . 10

2.3.1 Example application: theneeds . 11
2.4 The TClouds Platform Architecture . 11

2.4.1 Infrastructure . 12
2.4.2 Middleware . 14
2.4.3 Services . 15

2.5 Platform Instantiations . 16

II Testing 18

3 Final test plans for subsystems/prototypes 19
3.1 Introduction . 19
3.2 TrustedInfrastructure Cloud . 19

3.2.1 Test methodology/strategy . 19
3.2.2 Test cases . 19

3.3 Security Assurance of Virtualized Environments (SAVE) 24
3.3.1 Test methodology/strategy . 24
3.3.2 Test cases . 24

3.4 Tailored memcached service . 26
3.4.1 Short subsystem intro . 26
3.4.2 Test methodology/strategy . 26
3.4.3 Test cases . 26

3.5 Fault-tolerant Workflow Execution (FT-BPEL) 28
3.5.1 Test methodology/strategy . 28
3.5.2 Test cases . 29

3.6 Cryptography as a Service . 33
3.6.1 Test methodology/strategy . 33

TClouds D2.4.3 III

D2.4.3 – Final Reference Platform and Test Case Specification

3.6.2 Test cases . 33
3.7 Access Control as a Service (ACaaS) . 36

3.7.1 Test methodology/strategy . 36
3.7.2 Test cases . 36

3.8 BFT-SMaRt . 38
3.8.1 Test methodology/strategy . 38
3.8.2 Test cases . 38
3.8.3 Demos . 39

3.9 Resilient Object Storage (DepSky) . 40
3.9.1 Test methodology/strategy . 40
3.9.2 Test cases . 40

3.10 LogService . 42
3.10.1 Test methodology/strategy . 42
3.10.2 Test execution . 42

3.11 Remote Attestation Service . 44
3.11.1 Test methodology/strategy . 44
3.11.2 Test cases . 45

3.12 Ontology-based Reasoner-Enforcer . 50
3.12.1 Test methodology/strategy . 50
3.12.2 Test cases . 51

4 Test results 53
4.1 Trustworthy OpenStack Prototype . 53

4.1.1 LogService . 54
4.1.2 Remote Attestation Service . 56
4.1.3 Cryptography as a Service . 57
4.1.4 ACaaS . 60
4.1.5 Ontology-based Reasoner/Enforcer 63

4.2 TrustedInfrastructure Cloud Prototype . 63
4.3 BFT-SMaRt . 63
4.4 Resilient Object Storage (DepSky) . 64
4.5 Tailored Memcached . 64

4.5.1 Sevice deployment . 64
4.5.2 Test tailoring . 65

4.6 Fault-Tolerant BPEL . 65
4.6.1 Fault-free operation on standard infrastructure 65
4.6.2 Fault-free operation on FT-BPEL infrastructure 66
4.6.3 Crashed system present on standard infrastructure 66
4.6.4 Crashed system present on FT-BPEL infrastructure 67

4.7 SAVE Subsystem . 68
4.7.1 Discovery . 68
4.7.2 Analysis Unit Testing . 68
4.7.3 Analysis System Testing . 69

III Appendices 70

A Software details of the prototypes 71

TClouds D2.4.3 IV

D2.4.3 – Final Reference Platform and Test Case Specification

B Subsystems’ code availability 72

C Evolution of TClouds platform and integration of subsystems 73

D Low-level APIs 75

Bibliography 75

TClouds D2.4.3 V

D2.4.3 – Final Reference Platform and Test Case Specification

List of Figures

1.1 Graphical structure of WP2.4 and relations to other work packages. 3

2.1 Architectural and logical cloud stacks. 10
2.2 Amazon Web Services platform. 10
2.3 The TClouds platform. 12
2.4 Home healthcare scenario. 16
2.5 Smart lighting scenario. 17

3.1 libseclog dependencies installation . 42
3.2 libseclog building commands . 42

4.1 Nova tests results. 54
4.2 Python-novaclient tests results. 55
4.3 Quantum tests results. 55
4.4 Horizon tests results. 56
4.5 Successful JUnit Test Run. 68
4.6 Successful Groove Analysis Unit Test Run. 69

TClouds D2.4.3 VI

D2.4.3 – Final Reference Platform and Test Case Specification

List of Tables

2.1 TClouds subsystems and classification. Some services are based on middleware
ones [in brackets]. 13

2.2 TClouds services and required resources. 15

B.1 List of TClouds subsystems and code availability 72

C.1 List of TClouds subsystems and their evolution in the frame of TClouds Platform 74

TClouds D2.4.3 VII

D2.4.3 – Final Reference Platform and Test Case Specification

TClouds D2.4.3 VIII

D2.4.3 – Final Reference Platform and Test Case Specification

Chapter 1

Introduction

Chapter Author: Gianluca Ramunno (POL)

1.1 TClouds — Trustworthy Clouds
TClouds aims to develop trustworthy Internet-scale cloud services, providing computing, net-
work, and storage resources over the Internet. Existing cloud computing services are today
generally not trusted for running critical infrastructure, which may range from business-critical
tasks of large companies to mission-critical tasks for the society as a whole. The latter includes
water, electricity, fuel, and food supply chains. TClouds focuses on power grids and electricity
management and on patient-centric health-care systems as its main applications.

The TClouds project identifies and addresses legal implications and business opportunities
of using infrastructure clouds, assesses security, privacy, and resilience aspects of cloud comput-
ing and contributes to building a regulatory framework enabling resilient and privacy-enhanced
cloud infrastructure.

The main body of work in TClouds defines an architecture and prototype systems for secur-
ing infrastructure clouds, by providing security enhancements that can be deployed on top of
commodity infrastructure clouds (as a cloud-of-clouds) and by assessing the resilience, privacy,
and security extensions of existing clouds.

Furthermore, TClouds provides resilient middleware for adaptive security using a cloud-
of-clouds, which is not dependent on any single cloud provider. This feature of the TClouds
platform will provide tolerance and adaptability to mitigate security incidents and unstable op-
erating conditions for a range of applications running on a clouds-of-clouds.

1.2 Activity 2 — Trustworthy Internet-scale Computing Plat-
form

Activity 2 carries out research and builds the actual TClouds platform, which delivers trust-
worthy resilient cloud-computing services. The TClouds platform contains trustworthy cloud
components that operate inside the infrastructure of a cloud provider; this goal is specifically ad-
dressed by WP2.1. The purpose of the components developed for the infrastructure is to achieve
higher security and better resilience than current cloud computing services may provide.

The TClouds platform also links cloud services from multiple providers together, specif-
ically in WP2.2, in order to realize a comprehensive service that is more resilient and gains
higher security than what can ever be achieved by consuming the service of an individual cloud

TClouds D2.4.3 Page 1 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

provider alone. The approach involves simultaneous access to resources of multiple commodity
clouds, introduction of resilient cloud service mediators that act as added-value cloud providers,
and client-side strategies to construct a resilient service from such a cloud-of-clouds.

WP2.3 introduces the definition of languages and models for the formalization of user- and
application-level security requirements, involves the development of management operations
for security-critical components, such as “trust anchors” based on trusted computing technology
(e.g., TPM hardware), and it exploits automated analysis of deployed cloud infrastructures with
respect to high-level security requirements.

Furthermore, Activity 2 will provide an integrated prototype implementation of the trust-
worthy cloud architecture that forms the basis for the application scenarios of Activity 3. For-
mulation and development of an integrated platform is the subject of WP2.4.

These generic objectives of A2 can be broken down to technical requirements and designs
for trustworthy cloud-computing components (e.g., virtual machines, storage components, net-
work services) and to novel security and resilience mechanisms and protocols, which realize
trustworthy and privacy-aware cloud-of-clouds services. They are described in the deliverables
of WP2.1–WP2.3, and WP2.4 describes the implementation of an integrated platform.

1.3 Workpackage 2.4 — Architecture and Integrated Plat-
form

The objective of WP2.4 is the design of an overall architecture framework that serves as a basis
for the combination of the research results and prototypes of work packages WP2.1, WP2.2 and
WP2.3 in order to build an integrated proof of concept prototype of a resilient cloud-of-clouds
infrastructure. Based on the cloud applications (WP3.1, WP3.2), and the related technical re-
quirements (WP1.1), the resulting TClouds platform architecture and the required subsystems
are defined, implemented by the corresponding work packages, and finally integrated into the
proof of concept prototype of a trustworthy cloud environment, which is the major outcome of
this work package.

The workpackage is split into four tasks.

• Task 2.4.1 (M01-M08): Use Case Analysis

• Task 2.4.2 (M01-M28): Architecture including public interfaces

• Task 2.4.4 (M07-M36): Initial component Integration and final Integrated Platform

• Task 2.4.5 (M07-M36): Test Methodology and Tests Cases

Task 2.4.1 took place in the first year and was devoted to select and analyze the use cases to
be implemented by each subsystem, starting from the requirements formulated within Activity
1 and Activity 3 work packages. Task 2.4.2 is concerned to define an overall architecture and
the interfaces; these activities were started during the first year but continued during the second
year and will take part of the third year. Task 2.4.4 refers to the integration of the various
subsystems into a platform; it started during the first year and will end at the end of the project.
The outcome of this task for the second year (initial component integration) is the main input
for the present deliverable. Task 2.4.5 is focused on defining the test methodology and the test
cases and on actually performing the tests on the developed subsystems. Also this task spans
from the first year to the end of the project.

TClouds D2.4.3 Page 2 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

WP2.4

Architecture and Integrated

Platform

WP1.1 Requirements and

Roadmap

WP3.3 Validation and

Evaluation of the

TCLOUDS Platform

WP2.3 Cross-layer

Security and Privacy

Management

TASK 2.4.4: Initial

component Integration

and final Integrated

Platform

TASK 2.4.1: Use Case

Analysis

WP2.1 Trustworthy

Cloud Infrastructure

WP2.2 Cloud of

Clouds Middleware for

Adaptive Resilience

WP3.2 Cloud-

middleware and

Applications for the

Smart Grid

Benchmark Scenario

WP3.1 Cloud

Applications and Data

Structures for Home

Healthcare Benchmark

Scenario

TASK 2.4.2:

Architecture including

public interfaces

D.2.4.3

D.2.4.2

D.2.4.2

D.1.1.1

D.2.4.1

D.2.4.1
D.2.4.1

D.2.1.4

D.2.3.3

D.2.2.4

D.2.2.3

TASK 2.4.5: Test

Methodology and Tests

Cases

D.2.4.2

D.2.4.1

Figure 1.1: Graphical structure of WP2.4 and relations to other work packages.

During the second year the focus was the initial integration of the subsystems developed in
WPs 2.1-2.3 in terms of both connecting the subsystems to cooperate and having an integrated
development and testing process.

During the third year, the initial concept of the TClouds platform has been evolved into a
comprehensive ecosystem, which includes the original subsystems, arranged in logical service
layers that form the TClouds platform Version v2. Furthermore, the test plans for all subsystems
have been refined, their final test results have been obtained, and eventually the TClouds plat-
form has been provided to the two benchmark applications. For this reason the activities within
this work package have been carried out on two parallel tracks: refining the integration among
groups of subsystems to form the infrastructures at IaaS and evolving the subsystems, where
necessary, to fully support the benchmark scenarios. These activities involved a close collabo-
ration of all partners. The results of the final TClouds platform v2 concept and implementation
together with the test plans and results are collected in the deliverable D2.4.3.

Figure 1.1 illustrates WP2.4 and its relations to other work packages according to the
DoW/Annex I.

Requirements were collected from WP1 to define the use cases in Task 2.4.1. The architec-
ture and the interfaces defined in Task 2.4.2 are reported back to and used by WPs 2.1-2.3 to
develop their subsystems that become then the input for Task 2.4.4. The outcome of Task 2.4.2
is employed by WPs 3.1 and 3.2 to design and develop their applications. The output of Task
2.4.4 is the input for WP3.3 to perform the evaluation of the TClouds platform.

TClouds D2.4.3 Page 3 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

1.4 Deliverable 2.4.3 — Final Reference Platform and Test
Case Specification

Overview. Cloud computing is an emerging technology devoted to outsource IT infrastruc-
tures, from SME needs to large-scale computing and storage. However, organizations and
industries that make use of critical infrastructure are cautious to move towards cloud infras-
tructures since they still experience security and privacy breaches.

The TClouds project aims at facilitating the shift of computing paradigm for critical in-
frastructures by increasing the robustness of Infrastructure as a Service (IaaS) cloud platforms
through subsystems that can be combined and used in different scenarios: private or public
clouds, commodity or native TClouds clouds, or mixed scenarios. TClouds also provides build-
ing blocks as part of a secure Platform as a Service (PaaS) for application specific needs.

This deliverable is a compendium of the work done in workpackages 2.1, 2.2 and 2.3. The
subsystems conceived, designed, and developed in those workpackages, have been framed into
the TClouds Platform v2.1, a comprehensive secure cloud computing ecosystem comprising
two different prototypes (i.e. complex groups of integrated subsystems) at the IaaS layer and
several modules (i.e. single subsystems and simple aggregations of some of them) at the PaaS
layer. With these two alternative infrastructure prototypes we can cover the needs of a wide
range of application scenarios from private or community clouds with high security demands to
large-scale public clouds. With the appropriate selection of PaaS modules, the applications can
satisfy security requirements that cannot be managed at the IaaS and that have to be dealt with
by the applications themselves.

The TClouds Platform described in this deliverable has the objective to satisfy the require-
ments set by European and national laws on data protection (WP1.1) and by two benchmark
application scenarios, health-care (WP3.1) and energy related (WP3.2) applications. Such re-
quirements and how the TClouds subsystems satisfy them are reported in the previous deliver-
able D2.4.2 [S+12a]. The successful validation of the TClouds Platform against such require-
ments, on a per-subsystem basis and from Activity 3 applications perspective, is reported in the
deliverables D3.3.3 [Abi13] and D3.3.4 [Abi13].

Deviation from Workplan. This deliverable follows the workplan in the DoW/Annex I v4.

Target Audience. This deliverable aims at researchers and developers of security and man-
agement systems for cloud-computing platforms. The deliverable assumes graduate-level back-
ground knowledge in computer science technology, specifically, in virtual-machine technology,
operating system concepts, security policy and models, and formal languages.

Relation to Other Deliverables. The workpackages and especially the year 3 deliverables of
Activity 2 are closely related with each other, reflecting the integration efforts of Activity 2.
Roughly speaking WP 2.1 provides resilience, privacy and security to individual infrastructure
clouds (IaaS). WP 2.2 provides resilient middleware offering both infrastructure (IaaS) as well
as platform (PaaS) services, following the cloud-of-cloud paradigm. WP 2.3 deals with the se-
curity management and finally in WP 2.4 all is integrated to the final TClouds platform. So to
get the complete picture, the reader has to consider all deliverables of the different workpack-
ages.

To help the reader to gain a clean view of the Activity 2 outcomes for the third and final
year of the project, we provide here an overall view of the delivered TClouds platform and

TClouds D2.4.3 Page 4 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

how to map it to the actual Activity 2 deliverables (or their parts or chapters) released during
the third year. This view can be understood as the logical outline of all deliverables which is
broken down to the content presented in the different deliverables. The following logical view
starts from high level “big picture” (i.e. the latest concept of the TClouds platform), and moves
down towards an in-depth and more concrete level, covering research and technical details of
the integration of subsystems, updated research and technical details of single subsystems, and
the actually delivered software with instructions for installation and configuration.

(Part 1) TClouds platform v2.x: definition of platform, comparison with Amazon AWS ecosys-
tem, big picture of TClouds ecosystem and summary presentation tailored platform in-
stantiations into two Activity 3 benchmark scenarios (for further details on the benchmark
scenarios, see respectively D3.1.5 [D+13] and D3.2.4 [VS13]-D3.2.5 [Per13])

• D2.4.3 (this document), Part I (Chapter 2)

(Part 2) Integrated prototypes: research/technical details of the integration of subsystems to
form IaaS alternatives – Trustworthy OpenStack and TrustedInfractructure Cloud – and
PaaS modules/services – C2FS and SteelDB

• D2.1.5 [S+13a], Part I

• D2.2.4 [B+13a], Chapters 6 and 7

• D2.3.4 [B+13b], Chapters 3 and 5

(Part 3) Subsystems: research/technical details of single subsystems – only updates from pre-
vious deliverables

• D2.1.5 [S+13a], Part II

• D2.2.4 [B+13a], Chapters 2, 3, 4 and 5

• D2.3.4 [B+13b], Chapters 2, 4 and 6

(Part 4) Testing of prototypes and subsystems: test plans and results

• D2.4.3 (this document), Part II

(Part 5) Software details: instructions for installation, configuration and usage of prototypes
(integrated subsystems)

• D2.1.4-D2.3.3 [BS+13]

• D2.4.3 (this document), Appendix A

(Part 6) Software delivery: source code and/or binary code of prototypes and subsystems

• TClouds platform v2.0 (only subsystems for single cloud): D2.1.4-D2.3.3 [BS+13],
companion tarball(s)

• TClouds platform v2.1 (complete): D2.4.3 (this document), companion tarball(s)

TClouds D2.4.3 Page 5 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Structure. Following the logical structure of the Activity 2 deliverables previously explained,
this deliverable is organized in two main parts and appendices.

Part I describes the concept, the architecture and the instantiations of the TClouds Platform
as a result of the evolution that took place throughout the project and only consists of Chapter 2.

Part II includes the documentation related to the testing of the TClouds Platform compo-
nents. Chapter 3 reports the tests plans for most of the subsystems being part of the TClouds
Platform. Chapter 4 reports the test results, grouped by prototypes (where applicable).

Part III contains the appendices. Appendix A points to the documentation for installation,
configuration and usage of released software. Appendix B reports the source and/or object code
availability for each subsystem and the location where the code can be accessed from. Ap-
pendix C reports the evolution of the TClouds platform concept and of the subsystems through-
out the project. Appendix D points to the report R2.4.2.4 [S+13b] for the documentation of the
low-level APIs.

TClouds D2.4.3 Page 6 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Part I

TClouds Platform v2

TClouds D2.4.3 Page 7 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Chapter 2

The TClouds Platform
Concept, Architecture and Instantiations

Chapter1 Authors: Alysson Bessani (FFCUL), Leucio A. Cutillo (POL), Gianluca Ramunno
(POL), Norbert Schirmer (SRX), Paolo Smiraglia (POL)

2.1 Introduction
This chapter aims at presenting the TClouds platform: it wants to give the reader an overview of
the platform, showing its architecture and the subsystems it is composed of without going into
details. Research results related to the subsystems, including their effectiveness, and technical
details can be found respectively in the referenced papers and deliverables. Our goal here is
to provide an integrated view of the platform, summarizing what it offers to improve the se-
curity of cloud applications. The motivation for providing two IaaS frameworks and an initial
comparison of the resource costs of the offered secure/resilient storage services are also given.
The approach chosen during the third year, which does not require fully integrating all subsys-
tems in a single software package, recognizes that the complexity of the cloud security problem
could not be solved by a single solution, requiring thus a multitude of options and services that
can be adapted to different application requirements with a tailored platform. Such approach is
backed by the concept of platform here presented (which is the final result of an evolution oc-
curred throughout the project), and is validated by two different instantiations for the project’s
benchmark scenarios. The security requirements that TClouds platform must satisfy, originated
in Activity 3 for the benchmark application scenarios and in Activity 1 for the legal aspects, are
collected in Chapter 2 of D2.4.2 [S+12a]: these requirements are mapped onto Activity 2 sub-
systems in Section 3.5 of the same deliverable. Such mapping was the starting point for the vali-
dation activities performed within Activity 3 during the third year: the validation of the TClouds
platform against the legal and application requirements has been successfully performed on a
per-subsystem basis: the validation procedure and results are collected in D3.3.4 [A+13]. As a
result of the overall approach, the project contributed with several subsystems and fundamental
results that both improved the understanding of the cloud security problem and provide new
ways to think about it. Details on the evolution of the platform concept in TClouds are given in
Appendix C.

1The source material of this chapter, with the exception of the introductory section, appeared as a paper pre-
sented at the DISCCO’13 workshop, September 30th 2013, Braga, Portugal.

TClouds D2.4.3 Page 8 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

2.2 Concept of platform
Extending the original meaning of “flat form” as a place suitable to sustain, the concept of
platform in a personal computing context indicates a hardware and/or software architecture that
serves as a foundation on which application programs can run, that is, “an alternative term for
a computer system, including both the hardware and the software”2.

The term originally dealt with only hardware, and sometimes it is still used to refer a partic-
ular CPU model or computer family (e.g. x86, x64). However, most of the times by “platform”
one means an environment where a software can run, ranging from an operating system which
is, from the application software perspective, a platform by default, to application software,
which can serve the purpose of platform from an ad-hoc extension perspective. Therefore, an
application can run on a platform and serve in turn as a platform for other programs. Neverthe-
less, applications that do not provide any API cannot be considered as platforms.

The recent rise of cloud computing posed a paradigm shift for computation, allowing users
to benefit from “everything-as-a-service” for the first time. As a matter of fact, globally de-
ployed cost-efficient and scalable resources are made available on demand, allowing users to
access them via lightweight devices and reliable Internet connection. According to NIST, cloud
computing paradigm is composed by three service models [MG11]: Infrastructure as a Service
(IaaS), allowing users to provision fundamental computing resources where the consumer is
able to deploy and run arbitrary software; Platform as a Service (PaaS), allowing to deploy onto
the cloud infrastructure applications created using tools supported by the provider; and Soft-
ware as a Service (SaaS), allowing users to access providers applications running on a cloud
infrastructure.

At a first glance, a parallelism between the personal computing and the cloud computing
paradigm become evident. One could associate, respectively, the cloud computing IaaS to the
personal computing hardware, the PaaS to a personal computing Operating System (OS) or
software development frameworks, and finally the SaaS to a software application running in
user space. However, such glance does not grab a main distinction among the two models:
while in personal computing both software framework environments and user applications run
compulsorily on top of the hardware and the hardware therefore acts as a platform for them, in
cloud computing there’s no constrained dependency between IaaS, PaaS and SaaS, i.e. SaaS
and PaaS provisioning does not depend on IaaS, therefore IaaS is not a mandatory platform
for PaaS and SaaS. For instance, solutions like Owncloud3 propose PaaS provisioning without
asking for any IaaS. Users may install Owncloud in their own (Web and RDBMS) server and
install, in turn, a series of (SaaS) applications (e.g., agenda, calendar) on top of it.

Generally speaking, in the context of cloud computing, IaaS, PaaS, and SaaS may be selec-
tively provided to the user and interact among one each other when required according to the
user’s specific goals. As an additional example, a user aiming to provide a web service may
(1) ask for a virtual machine, install his preferred OS and setup his own web server (IaaS); (2)
use the cloud tools to build his service (PaaS); (3) use the closest web service already provided
by the cloud (SaaS). In a logical point of view, when looking to IaaS, PaaS and SaaS from the
cloud provider perspective, one may create a taxonomy of services and arrange them in a logical
stack, as depicted in Figure 2.1. However, from an architectural point of view, IaaS, PaaS and
SaaS are not arranged in any stack. They rather depend on either the cloud OS or the cloud
middleware.

2http://www.ict4lt.org/en/en_glossary.htm
3http://owncloud.org/

TClouds D2.4.3 Page 9 of 78

http://www.ict4lt.org/en/en_glossary.htm
http://owncloud.org/

D2.4.3 – Final Reference Platform and Test Case Specification

Architectural

CloudLOperatingLSystem CloudLMiddleware

OperatingLSystem

InfrastructureL(IaaS) PlatformL(PaaS) SoftwareL(SaaS)

Services

Hardware

Logical

PlatformL(PaaS)

InfrastructureL(IaaS)

SoftwareL(Saas)

M
an

ag
em

en
t

Figure 2.1: Architectural and logical cloud stacks.

2.3 Amazon AWS architecture
The aim of this section is to show that there exists commodity clouds that implement the concept
of platform outlined in Section 2.2. In particular we give an overview of Amazon Web Services
(AWS), the Amazon’s cloud platform, and we illustrate the way a real application can be built
on top of it by selecting a subset of platform services/components.

Officially launched in 2006, AWS is a cloud platform providing several functionalities that
allow the cloud customers to build their own cloud-based systems. Each functionality is pro-
vided as a service and could be adopted alone or integrated with others, in order to realize a
more complex system. Figure 2.2 shows that the AWS platform is organized in layers, each one
representing a class of services4.

AWS Global Physical Infastructure

Foundation Services

Compute Storage Database Networking

Application Platform Services

Content
Distribution

Messaging Search
Distributed
Computing

Libraries &
SDKs

Management & Administration

Web
Interface

Identity &
Access

Deployment &
Automation

Monitoring

Figure 2.2: Amazon Web Services platform.

At the base of the platform, there is the global physical infrastructure of the Amazon’s cloud
– spread over different geographical sites – which is shared among all the services. Above the
infrastructure, there are three layers, each one representing a class of service. The first class
groups the basic services (computing, storage, database and networking) while in the second,

4This figure is adapted from http://docs.aws.amazon.com/gettingstarted/latest/
awsgsg-intro/intro.html.

TClouds D2.4.3 Page 10 of 78

http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/intro.html
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/intro.html

D2.4.3 – Final Reference Platform and Test Case Specification

the middle-level services like searching and message queuing are provided. Finally, the third
class contains some high level services providing functionality to administrate and monitor the
platform or to manage the identity and the permissions of the platform users.

2.3.1 Example application: theneeds

A good example showing the AWS services as cloud application building blocks is theneedsα5,
a content curation platform that helps readers discover and share the best online content and ser-
vices tailored to their specific interests. The theneedsα infrastructure6 is deployed in two EC2
instances both using AutoScale7. In the following, we refer to them with the names Front End
(FE) and Back End (BE). The FE is interfaced to Internet through the Elastic Load Balancer
(ELB) while static contents like images are provided via Amazon S3. Furthermore, the manage-
ment of DNS queries is optimized thanks to the usage of the Route53 service. For data exchange
between FE and BE it is used a database back-end implemented by means of RDS Multi-AZ,
while to manage HTTP sessions and caching, theneedsα adopts a third party NoSQL back-
end (Redis Cloud8). All the back-end tasks are dispatched by the FE on a queue implemented
using Amazon SQS queuing service by the BE and executed on it. About the infrastructure
monitoring, the FE is equipped with CloudWatch. Moreover, the application data are inspected
via a RSyslog based system while the web traffic is analysed through Google Analytics. Fi-
nally, theneedsα adopts CloudSearch to implement searching capabilities and Amazon SES
for email based notification delivering. The theneedsα case highlights how the integration of
different “standalone” services could help cloud customers in the implementation of a complex
cloud based application.

2.4 The TClouds Platform Architecture
The TClouds project defined a secure cloud vision and developed a platform – depicted in Fig-
ure 2.3 – accordingly. The platform is composed of a set of components, called subsystems and
listed in Table 2.1. These components are grouped in three classes: infrastructure, middleware
and services.

The first class of subsystems allows to make more secure the services standing at IaaS log-
ical layer, while the second and the third classes do the same for the PaaS layer. In particular,
the libraries belonging to the middleware class are the foundation for the third class of subsys-
tems, i.e. the actual services at PaaS layer. In the first class we can further distinguish between
subsystems that implement/enhance the core technology with security features, and subsystems
targeted to the cloud management (marked as mgmt in both Figure 2.3 and Table 2.1). In the
second and third classes we can further distinguish between subsystems working in a single
cloud and those enabling the cloud-of-clouds paradigm (marked as CoC in both Figure 2.3 and
Table 2.1). The TClouds platform is, therefore, a set of building blocks for applications. Within
the project, such platform is being validated by two benchmark scenarios: home healthcare and
smart lighting. They consist of two SaaS applications built on top of two different instantiations

5http://www.theneeds.com
6Details by courtesy of E. Cesena (ec@theneeds.com).
7All AWS services mentioned in this section are extensively documented in http://aws.amazon.com/

products/.
8http://redis-cloud.com/

TClouds D2.4.3 Page 11 of 78

http://www.theneeds.com
ec@theneeds.com
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://redis-cloud.com/

D2.4.3 – Final Reference Platform and Test Case Specification

TClouds Global Physical Infastructure

Infrastructuretos

ACaaS
Ontology

Based
Reasoner

RA
Service

CaaS

Middleware

BFT
SMaRT

CheapBFT DepSky Fault-tolerant
Workflow Execution

Services

memcached
S3

Proxy
Log

Service
C2FS SteelDB KV Store

Infrastructuretic

TOM
Trusted

Management
Channel

Trusted
Server

Log
Service

mgmt CoC

SAVE

Figure 2.3: The TClouds platform.

of TClouds platform (see Section 2.5). A high level view of how the TClouds platform can be
used in multi-cloud environments is given in [VBP12].

2.4.1 Infrastructure
We classify as infrastructure the set of subsystems that can be combined to create two possible
secure services at IaaS layer.

The first one, called Trustworthy OpenStack (TOS) [S+12a], is based on OpenStack9, an
open-source framework for resource management in cloud environments that integrates several
subsystems (the group called infrastructuretos in the Figure 2.3). Access Control as a Service
(ACaaS) and Remote Attestation Service (RA Service) allow to create a trusted infrastructure
in which VMs are instantiated on the cloud nodes only if (1) software installed on the nodes is
validated against pre-defined sets of measurements (hash of the binaries) and (2) the instantia-
tion respects some access control rules expressed in terms of node security properties requested
by the user when launching the VM. Both subsystems are implemented as new filters for the
standard OpenStack scheduler that, this way, acquires new capabilities for planning VM deploy-
ments. The RA Service is based on the OpenAttestation10 SDK and on an integrity analysis tool
for Linux distributions [CRS+11]. Ontology-Based Reasoner-Enforcer11 is an enhancement
of libvirt library to support the Trusted Virtual Domains (TVDs) and a plugin for Quantum12

component, thus enhancing the capabilities of OpenStack to instantiate per-customer TVDs; it
can work together with Security Assurance of Virtualized Environments (SAVE) [BGSE11] to
verify the effectiveness of the TVD isolation. The Cryptography as a Service (CaaS) [BBI+13],
based on Xen hypervisor, allows the VM image and disk volumes protection while the VM is
running by using transparent on-the-fly encryption/decryption. Log Service provides a secure
log for the cloud, both as IaaS and PaaS layers: confidentiality, access control and forward

9http://www.openstack.org/
10https://github.com/OpenAttestation/OpenAttestation
11Currently only the enforcer part is implemented.
12Quantum is a virtual networking service for OpenStack, available since the Folsom version: http://docs.

openstack.org/folsom/openstack-network/admin/content/index.html

TClouds D2.4.3 Page 12 of 78

http://www.openstack.org/
https://github.com/OpenAttestation/
OpenAttestation
http://docs.openstack.org/folsom/openstack-network/admin/content/index.html
http://docs.openstack.org/folsom/openstack-network/admin/content/index.html

D2.4.3 – Final Reference Platform and Test Case Specification

TClouds subsystem Classification Description

Access Control as a Service (ACaaS) Infrastructuretos

[mgmt]
It ensures that user VMs are only executed on cloud nodes
matching their security requirements.

Ontology-based Reasoner-Enforcer Infrastructuretos

[mgmt]
It allows the definition of TVDs and enforces the network iso-
lation property at infrastructure level.

Remote Attestation Service (RA Service) Infrastructuretos

[mgmt]
Web based framework performing the integrity verification of
the cloud nodes via Remote Attestation.

Cryptography as a Service (CaaS) Infrastructuretos It enables a VM to use an encrypted storage device transpar-
ently (including the root file system) as if it were plaintext.

Log Service (*) Infrastructuretos Secure logging services providing log files integrity verifica-
tion and confidentiality preservation.

Security Assurance of Virtualized
Environments (SAVE)

Infrastructuretos

[mgmt]
It extracts configuration data from multiple virtualization envi-
ronments, in order to validate isolation of cloud users.

TrustedObjects Manager (TOM) [mgmt]

Trusted Management Channel [mgmt]

TrustedServer

Infrastructuretic

Ensures integrity by means of Trusted Computing technolo-
gies, providing TVDs (securely isolated and encrypted comput-
ing, networking and storage resources) and controlling all man-
agement aspects of the cloud, abandoning the threat of cloud
administrators with elevated privileges.

State Machine Replication (BFT-SMaRt) Middleware
[CoC] General BFT State Machine Replication middleware for Java.

Resource-efficient BFT (CheapBFT) Middleware Extension of BFT-SMaRt that makes use of trusted (hardware)
components to ensure secure replication with less replicas.

Fault-tolerant Workflow Execution Middleware Robust web services orchestration engine based on BPEL.

Resilient Object Storage (DepSky) Middleware
[CoC]

Replication library for storing data in a set of S3-like cloud
storage services.

Simple Key/Value Store (memcached) Service It efficiently stores in memory Key-Value pairs acting as a
cache.

Confidentiality Proxy for S3 (**) Service It provides a confidentiality layer on top of the commodity S3
storage service.

Log Service (*) Service Secure logging services providing log files integrity verifica-
tion and confidentiality preservation.

Cloud-of-Clouds File System (C2FS)
[DepSky + BFT-SMaRt]

Service
[CoC]

Cloud-backed file system that stores data securely in several
clouds.

Fault-tolerant Relational DB (SteelDB)
[CheapBFT / BFT-SMaRt]

Service
[CoC if BFT-SMaRt]

SQL database replication engine implemented over BFT-
SMaRt or CheapBFT

KV-Store
[CheapBFT / BFT-SMaRt]

Service
[CoC if BFT-SMaRt] Key-value store implemented using BFT-SMaRt or CheapBFT

(*) The same subsystem Log Service is used with two different instantiations as infrastructure and service component.
(**) This subsystem is also integrated with Infrastructuretic for the transparent encryption setup within a TVD.

Table 2.1: TClouds subsystems and classification. Some services are based on middleware ones
[in brackets].

integrity of the log entries are guaranteed by design through different secure logging schemes
(Schneier-Kelsey [SK99a] is the first one implemented). A resilient version of the Log Service
uses CheapBFT middleware (see Subsection 2.4.2) to guarantee the availability of this service
despite the occurrence of Byzantine faults.

Most of the mentioned subsystems are meant to increase the security of the customer’s
virtual resources against other customers or by guaranteeing the access to higher security cloud
resources. CaaS goes further and guarantees a security property, the confidentiality of VM
volumes, against a malicious cloud administrator by exploiting trusted computing technology.
Most subsystems (RA Service, Ontology-Based Reasoner-Enforcer, Log Service and SAVE)
can also be used independently from Trustworthy OpenStack or in conjunction with other cloud
frameworks.

The second infrastructure, called TrustedInfrastructure Cloud (TIC) [S+12a] developed in
the project, is based on a proprietary technology to create virtual infrastructures (network plus
VMs) in which information flow constraints are enforced in a secure way through the native use

TClouds D2.4.3 Page 13 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

of Trusted Computing. It integrates the following subsystems (the group called infrastructuretic

in the Figure 2.3): Trusted Server, a computing node in the infrastructure, Trusted Object Man-
ager (TOM), the management component, and a Trusted Management Channel for secure au-
thentic communication between TOM and a Trusted Server.

The motivation for implementing two distinct infrastructures is as follows. TrustedInfras-
tructure Cloud is constructed from ground up with security and trustworthiness in mind, em-
ploying trusted computing technologies as a hardware anchor. With trusted boot and remote
attestation we ensure that only untampered servers with our security kernel are started and
that the sole way of administration is via the trusted channel from the management component
TOM. Hence no administrator with elevated privileges is necessary and hence this functionality
is completely disabled, abandoning the possibility for an administrator to corrupt the system.
On the contrary, Trustworthy OpenStack is based on OpenStack which has a strong bias to-
wards a scalable and decentralized architecture. We extend or embed new components into the
OpenStack framework to improve its security. With these two infrastructures we can cover the
needs of wider range of application scenarios. TrustedInfrastructure Cloud is especially attrac-
tive for private or community clouds with high security demands, while Trustworthy OpenStack
is attractive for large-scale public clouds.

Given one of these two infrastructures to support the execution of virtual machines, one can
develop applications for such secure cloud. These applications can make use of some other
TClouds subsystems that fall in one of the two classes: middleware and services.

2.4.2 Middleware
Middleware components provide programming libraries and services that can be used to im-
plement applications and services to be deployed both in a TClouds infrastructure or any other
standard computing environment. The TClouds platform defines replication middleware com-
ponents that are aligned with one of the main objectives of the project: avoiding single-point of
failures.

The first type of middleware provided in TClouds is based on the State Machine Replication
(SMR) paradigm [Sch90], where clients can invoke operations that are executed in a set of
replicas in a coordinated way, i.e., all replicas execute the same sequence of operations, even if
a subset of these replicas are subject to arbitrary failures that may crash or corrupt the replica
state.

The platform provides two implementations of SMR. The first is BFT-SMaRt13, an open-
source Java programming library that implements state-of-the-art replication algorithms to tol-
erate up to f Byzantine faults in a group of at least 3f+1 replicas. The second SMR middleware
is CheapBFT [R. 12], an extension/redesign of BFT-SMaRt implementing a novel replication
protocol that requires only f + 1 active replicas (plus f backup replicas) to tolerate up to f
Byzantine faults.

Notice that CheapBFT requires less replicas than BFT-SMaRt, but it requires the replicas
to be equipped with trusted component (e.g., a TPM) as the one provided in the TClouds in-
frastructural solutions. BFT-SMaRt, on to other hand, makes no assumption about the replicas,
and thus can can be used to implement replicated services with replicas spread around different
cloud providers, enabling the cloud-of-clouds paradigm.

A second type of replication middleware provided in TClouds is the resilient object storage
implemented in the DepSky cloud-of-clouds replication storage [BCQ+13]. DepSky is a Java

13http://code.google.com/p/bft-smart

TClouds D2.4.3 Page 14 of 78

http://code.google.com/p/bft-smart

D2.4.3 – Final Reference Platform and Test Case Specification

programming library that implements a set of replication protocols that store objects (variable-
size byte arrays) in a set of cloud storage services (e.g., Amazon S3, Rackspace Files, Google
Storage, etc.). Notice that contrary to the SMR solutions, DepSky does not support service
replication (i.e., there is no server or general service), as the client-side programming library
can be used only to store data securely in multiple cloud storage providers.

Finally, the third and last replication middleware is a BPEL-based orchestration engine that
can be used to coordinate interactions between multiple services in a cloud environment. The
key innovation of this middleware/service, when compared with similar engines, is that it is
fault-tolerant [BDH+12].

2.4.3 Services
Services, on the other hand, are subsystems that can be used by external applications. A primary
example of services would be the several storage solutions devised in the project. Some of the
services developed in TClouds directly use the middleware developed within the project. In
fact, most of the innovation of these services are due to this middleware.

Table 2.2 shows a comparison in terms of the resources required to run different storage ser-
vices of the TClouds platform. The costs are given in terms of the number of VMs, Hardware-
enhanced VMs (HVM) or storage clouds required to run these services.

Service Resources
KV-SMR (CheapBFT) 2f + 1 HVMs
KV-SMR (BFT-SMaRt) 3f + 1 VMs
SteelDB (CheapBFT) 2f + 1 HVMs
SteelDB (BFT-SMaRt) 3f + 1 VMs
Simple Key/Value Store (memcached) VM
Confidentiality Proxy for S3 single storage cloud
C2FS (DepSky) 3f + 1 storage clouds
Log Service VM
Log Service (CheapBFT) 2f + 1 HVMs

Table 2.2: TClouds services and required resources.

In a similar way to AWS and other cloud providers, a TClouds-enabled provider could also
offer several secure and high-available database solutions. These solutions aims to support dif-
ferent application needs and require different amount of resources. The KV-SMR is a highly
dependable and durable storage service (that is able to tolerate even the most conspicuous failure
behaviors) that can be used by applications that do not require relational semantics in their data
store (in the same spirit of NoSQL databases). The implementation of such storage service is
simplified by the development of a durability layer for SMR-based storage services [BSF+13].
Finally, the Fault-tolerant Relational DB (SteelDB) is an implementation of a Byzantine fault-
tolerant relational database based on TClouds BFT middleware. The key idea here is to im-
plement the Byzantium algorithm [GRP11] to synchronize the database replicas only when
transactions are committed. Both KV-SMR and SteelDB can be deployed over BFT-SMaRt or
CheapBFT. As expected, If BFT-SMaRt is used, four replicas are required to tolerate a single
fault, but plain VMs could be used to run these replicas. If CheapBFT is used, only two active
replicas and one backup replica is required to tolerate one Byzantine fault, however, the VMs
need to be hardened by a trusted component.

TClouds D2.4.3 Page 15 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

The platform also offers dedicated VMs that can be used as (non-durable) main-memory
cache for applications subject to low-latency requirements: the simple key/value storage.

In terms of (external) object storage, two enhanced services are provided in TClouds. The
first is a confidentiality proxy for AWS’ S3 storage service. The idea of this service is to use
external cloud storage services ensuring the confidentiality and integrity of the data stored there.
The other one is C2FS [S+12a], a cloud-of-clouds file system, that uses the DepSky middle-
ware to store data in several cloud storage providers. C2FS offers confidentiality, integrity and
availability, even if some of the cloud providers supporting the service are unavailable or of-
fline. Despite the fact C2FS requires four clouds to tolerate a single faulty provider, its cost in
terms of storage is just 50% more storage space than what is required when storing the data in
a single provider (e.g., when using the confidentiality proxy). This is achieved with the use of
RAID-like techniques implemented by DepSky [BCQ+13].

The only storage offer that is not suited for storing general application data is the log service.
This is a specialized service that can be used to store secure logs for the purpose of account-
ability and auditability of TClouds-based applications. The LogService can be used with a
single remote server for storing the logs (being thus subject of the same problems as in normal,
non-replicated systems), or be deployed using a log storage over CheapBFT middleware, in
which the availability and integrity of the logs is ensured even if some of the storage nodes are
compromised.

2.5 Platform Instantiations
To demonstrate and evaluate the TClouds platform we instantiate it in the context of two appli-
cation scenarios: home healthcare and smart lighting. The home healthcare scenario develops
a home monitoring system for depressed patients including various stakeholders: patients, rela-
tives, therapists, etc. The core issue is the processing of the confidential patient data. The smart
lighting system controls the public lighting of a country, and the main requirement is the in-
tegrity and availability of the system. These scenarios employ different subsets of the TClouds
subsystems to match their specific requirements. In the following we list the subsystems used
in each scenario and provide a brief description of why they are used in the scenario.

The home healthcare scenario (Figure 2.4) [D+13] is hosted on top of Trustworthy Open-
Stack. This platform provides some core security benefits which are the foundation for the se-
curity requirements for the application layer. The application logic itself enforces a fine grained
access control on the processed patient data to ensure privacy of the data. Moreover, the appli-
cation directly employs the Log Service to securely store sensitive accesses to the data within
the log.

Cloud;of;Clouds'
PHR"LS"

EHR
_DE"

EHR
_IT"

AS"

AS"

LS"LS"

…'

Private'Hospital'Cloud'

…'

External'Private'
Hospital'Cloud'

Figure 2.4: Home healthcare scenario.

TClouds D2.4.3 Page 16 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

In this scenario, (1) the Cryptography as a Service is used to provide secure key man-
agement and confidentiality for storage and VM images; (2) Access Control as a Service and
Remote Attestation Service are used to control the geolocation where the VMs are deployed;
(3) the Ontology-based Reasoner is used for secure separation of tenants by means of Trusted
Virtual Domains; (4) the Log Service to provide tamper-proof logging of infrastructure and ap-
plication events; (5) CheapBFT is used to add fault tolerance to the log service; (6) the C2FS
is employed for backup important data in the cloud-of-clouds; (7) the SAVE tool is used to
check the information flows and verify trusted virtual domains (TVD) isolation; finally, (8) the
Simple Key / Value Store (memcached) is used for caching database data, avoiding the latency
of wide-area replication.

The smart lighting scenario (Figure 2.5) [Per13] is hosted on top of the TrustedInfrastructure
Cloud. The core of the application is a highly-dependable relational database which stores the
smart lighting configurations. There are two main requirements for the the database: integrity
and availability. These requirements are satisfied by replicating the database using the BFT State
Machine Replication middleware developed in TClouds. Moreover the application provides two
interfaces, one to general web browsers that can only read data from the database, and a second
one, with write priviledges, that can only be accessed by machines within a TVD.

Amazon'

Rackspace'
P"

EDP'Porto'datacenter'

EDP'Lisbon'datacenter'

AS"

SKVS"

AS"

SKVS"

Rela+onal"
DB"

…'

Figure 2.5: Smart lighting scenario.

This scenario uses the following TClouds subsystems: (1) Trusted Objects Manager, Trusted
Server, Trusted Management Channel, which together provide the core cloud infrastructure
with strong integrity and confidentiality properties to implement TVDs; and (2) State Machine
Replication (BFT-SMaRt), to provide Byzantine fault tolerance to the SteelDB, with its four
replicas deployed in two trusted clouds and two commercial clouds.

TClouds D2.4.3 Page 17 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Part II

Testing

TClouds D2.4.3 Page 18 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Chapter 3

Final test plans for subsystems/prototypes

Chapter Authors: Roberto Sassu (POL), Paolo Smiraglia (POL); Alexander Buerger, Norbert
Schirmer (SRX); Alysson Bessani, Marcel Henrique dos Santos (FFCUL); Sören Bleikertz,
Zoltan Nagy (IBM); Imad M. Abbadi, Anbang Ruad (OXFD); Johannes Behl, Klaus Stengel
(TUBS); Mihai Bucicoiu, Sven Bugiel, Hugo Hideler, Stefan Nürnberger (TUDA).

3.1 Introduction
This chapter collects the final test plans for subsystems and prototypes. Such plans have been
defined according to the testing methodology already used during the previous year and de-
scribed in the Sections 4.1, 4.2, 4.3 and 4.5 of D2.4.2 [S+12a].

3.2 TrustedInfrastructure Cloud

3.2.1 Test methodology/strategy
The TrustedObjectsManager component will be tested in a manual way. The prerequisites for
this testing are a readily setup TrustedObjectsManager, and a TrustedDesktop – as well as a
TrustedServer instance connected together via network (LAN/WAN). In order to operate the
tests, at least one applicable virtual machine instance (VirtualBox) is required for addressing
the envisaged tests. A successful test will fulfill all test cases described in Chapter 3.2.2. This
test cannot be automated since user interaction with different physical machines is required.

3.2.2 Test cases
• Type of test: manual

• Coverage: high

• Description of the procedure:

– setup and configure TrustedObjectsManager

– setup and configure TrustedServer

– setup and configure TrustedDesktop

– expected result: Virtual machine runs and TrustedServer can be used on Trusted-
Desktop

TClouds D2.4.3 Page 19 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.2.2-1/ Create compartment on TrustedObjectsManager
DESCRIPTION Create a compartment on TrustedObjectsManager in order to be capable

to start and stop it on TrustedServer and use it’s provided services on
TrustedDesktop from within the same TrustedVirtualDomain

TYPE Functional test
PRECONDITIONS The user is logged in on the TrustedObjectsManager. A virtual-disk

image is available locally
STEPS

1. User creates a new TrustedVirtualDomain by choosing ”New
TVD” and assigning a name and a color to it

2. User right-clicks on the newly created TrustedVirtualDomain and
chooses ”Compartments”

3. User selects ”New”, ”Compartment Manager” and clicks ”Up-
load”

4. User selects the unassigned virtual-disk image and presses ”OK”
5. User waits for the upload to be finished
6. User waits for the calculation of the SHA1-sum
7. User clicks ”Close”
8. User assigns a compartment name (without whitespaces) to the

newly created compartment
9. User checks ”Enable Compartment”

10. User unchecks ”Enforce client update”
11. User chooses the uploaded virtual-disc image from the dropdown

menu
12. User clicks ”Apply” and ”OK”

TEST CASE ID /TC 3.2.2-2/ Start compartment
DESCRIPTION Start a compartment on TrustedServer from the TrustedObjectsMan-

ager’s GUI
TYPE Functional test
PRECONDITIONS The user is logged in on the TrustedObjectsManager. The TrustedServer

is connected to the TrustedObjectsManager. A compartment is installed
but not running on the TrustedServer.

STEPS
1. The user selects the TrustedServer, the compartment should be

started on
2. The user selects a compartment that is installed but not currently

running on the TrustedServer
3. The user triggers a start of this compartment on the TrustedServer
4. The compartment should be running on the TrustedServer

TClouds D2.4.3 Page 20 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.2.2-3/ Service usable from TrustedDesktop
DESCRIPTION A service within a running compartment on TrustedServer can be used

from the same TrustedVirtualDomain on TrustedDesktop
TYPE Functional test
PRECONDITIONS The TrustedServer is running and a compartment providing a service is

started. The user is logged in on TrustedDesktop. The TrustedDesk-
top is connected to the TrustedServer. A compartment within the same
TrustedVirtualDomain as the service provided by the TrustedServer, is
started on TrustedDesktop.

STEPS
1. User uses the service from within the compartment
2. The service answers as expected

TEST CASE ID /TC 3.2.2-4/ Stop compartment
DESCRIPTION Start a compartment on TrustedServer from the TrustedObjectsMan-

ager’s GUI
TYPE Functional test
PRECONDITIONS The user is logged in on the TrustedObjectsManager. The TrustedServer

is connected to the TrustedObjectsManager. A compartment is running
on the TrustedServer.

STEPS
1. The user selects the TrustedServer on which the running compart-

ment should be stopped
2. The user selects the running compartment on the TrustedServer
3. The user triggers a stop of this compartment on the TrustedServer
4. The compartment should be shutdown on the TrustedServer

TEST CASE ID /TC 3.2.2-5/ Mount Amazon S3 storage on TrustedServer
DESCRIPTION A predefined Amazon S3 storage bucket is mounted to TrustedServer
TYPE Functional test
PRECONDITIONS An empty S3-bucket was already defined via the AWS console The user

is logged in on the TrustedObjectsManager The TrustedServer is con-
nected to the TrustedObjectsManager The TrustedServer is connected
to the Internet

STEPS
1. The user selects the S3 storage tab in the prefences of the Trust-

edServer
2. The user enters the S3 backend credentials
3. The user enters the name of the predefined S3 bucket
4. The user enters an encryption password for the files stored within

the bucket
5. The predefined Amazon S3 bucket is mounted on the Trusted-

Server

TClouds D2.4.3 Page 21 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.2.2-6/ Provide Amazon S3 storage to compartments via Trusted-
Server

DESCRIPTION The mounted Amazon S3 bucket storage can be used securely from
within any TVD/VM defined in TrustedInfrastructures

TYPE Functional test
PRECONDITIONS The user is logged in on an TrustedDesktop attached to TrustedInfras-

tructures. The TrustedServer is connected to the TrustedObjectsMan-
ager. A compartment within a TVD is running on the TrustedServer. A
compartment from within the same TVD is running on TrustedDesktop
A S3 storage bucket is mounted to TrustedServer

STEPS
1. The user of TrustedDesktop enters the compartment in a TVD
2. The user mounts the single provided smb/cifs-share to the OS,

running within the compartment
3. The transparently encrypted smb/cifs-share can be used to store

files

REMARKS

The encryption showcase cannot be mapped from within any TVD be-
cause of its intended transparency

TEST CASE ID /TC 3.2.2-7/ Mount Amazon S3 storage to S3 confidentiality proxy
DESCRIPTION A predefined Amazon S3 storage bucket is mounted to the S3 proxy

appliance
TYPE Functional test
PRECONDITIONS The users’ computer is physically connected to the S3 proxy appliance

via the internal network port (eth1) The S3 proxy appliance is connected
to the internet

STEPS
1. The user opens a webbrowser and accesses the configuration in-

terface of the S3 proxy appliance via https://192.168.1.2
2. The user enters the credentials to access the website
3. On the presented page, the user chooses one entry of the backend-

list (here Amazon S3)
4. The user enters the S3 backend credentials
5. The user enters the name of the predefined S3 bucket
6. The user enters an encryption password for the files stored within

the bucket
7. The user clicks the ”Mount”-button
8. A message is shown, that the S3 bucket is mounted

TClouds D2.4.3 Page 22 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.2.2-8/ Provide Amazon S3 storage to physical machines attached
to S3 confidentiality proxy

DESCRIPTION The mounted S3 storage bucket can be shared by machines attached to
the internal network side (eth1) of the S3 proxy appliance

TYPE Functional test
PRECONDITIONS Amazon S3 storage is mounted to the S3 confidentiality proxy The

users’ computer is physically connected to the internal network of the
S3 proxy appliance

STEPS
1. The user mounts the smb/cifs-share, provided by the S3 confiden-

tiality proxy
2. The transparently encrypted smb/cifs-share can be used to store

files

TClouds D2.4.3 Page 23 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.3 Security Assurance of Virtualized Environments (SAVE)

3.3.1 Test methodology/strategy
The Discovery component will be tested in a manual way. The requirement for this testing is an
existing OpenStack infrastructure (with our OpenStack discovery extensions) that we will try to
discover. A successful test will return the discovery data for this OpenStack infrastructure. This
test may become automated, once the discovery and infrastructure is configured, by periodically
trying to perform the discovery.

The Analysis component is tested using automated unit testing (Junit) as well as overall
system testing. The unit tests will verify that the translation of the discovery data into our
unified graph model is performed correctly by using sample input data and reference output
data. The overall system testing will perform the analysis of known good and known vulnerable
infrastructures (given by its discovery data), which need to be correctly identified as such.

3.3.2 Test cases

Discovery

• type of test: manual / semi-automated

• coverage: medium

• description of the procedure:

– setup OpenStack test infrastructure with our discovery extension

– configure discovery with host and credentials

– run discovery with configuration (can be done periodically afterwards for semi au-
tomation)

– expected output: discovery data and successful termination

Analysis Unit Testing

• type of test: automated

• coverage: medium

• description of the procedure:

– Test are aggregated in a JUnit runner

Analysis System Testing

• type of test: manual / semi-automated

• coverage: medium

• description of the procedure:

– Run analysis against known good and known vulnerable infrastructures given by its
discovery data

TClouds D2.4.3 Page 24 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

– For known good: analysis should return no problems

– For known vulnerable: indicate isolation problems

TClouds D2.4.3 Page 25 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.4 Tailored memcached service

3.4.1 Short subsystem intro
The main goal of this subsystem is to provide a platform for simple cloud-based services. We
provide the infrastructure to discover requirements for the service based on tha application
and then provide a tailored service. In order to demonstrate the platform’s capabilities, we
implement a variant of the memcached service on top of it.

The basic building blocks are a VM image containing the generalized service and the ap-
plication trying to use the service. After a short setup phase where the service is tailored the
application’s usage profile, the actual service can be used.

3.4.2 Test methodology/strategy
The subsystem will be tested in several different service configurations with existing benchmark
solutions for memcached. This covers both the tailoring process as well as the actual demo
service.

In order to operate the test, at least one virtual machine instance is required for setting up
the tailored service, and another host (physical or virtual) is needed for running the benchmark
programs. Both must reside on the same physical network and should be as close together as
possible in order to reduce communication latencies.

3.4.3 Test cases

TEST CASE ID /TC 3.4.3-1/ Test service deployment
DESCRIPTION This test will check if the service can be deployed on the OpenStack

infrastructure
TYPE Functional test
PRECONDITIONS Trusted OpenStack platform is up and running

Compiled tailored memcached image available

memslap benchmark program
STEPS

1. Login to OpenStack dashboard
2. Upload compiled Tailored Memcached image to OpenStack plat-

form as type ”AKI” (Amazon Kernel Image)
3. Upload small, empty disk image (1 MB) as ”AMI” type
4. Configure image to require a paravirtualized Xen environment
5. Start a new instance of AMI with tailored memcached kernel

(AKI)
6. Wait for memcached instance to obtain an IP address (10 seconds)
7. Run memslap benchmark with 100 test entries against the re-

ported IP address and check results

TClouds D2.4.3 Page 26 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.4.3-2/ Test tailoring
DESCRIPTION This test will check if the service tailoring works as expected
TYPE Functional test
PRECONDITIONS Trusted OpenStack platform is up and running

Precompiled tailored memcached image available with different func-
tion sets: One version with prepend/append function set enabled and
one without.

STEPS
1. Deploy both versions of tailored memcached on the Trusted

OpenStack platform as outlined in /TC 3.4.3-1/
2. Start two telnet sessions, one for each service
3. Establish a connection to both services
4. Switch telnet into CRLF-mode using the command set crlf

on the telnet escape prompt
5. Create a entry for testing by issuing the command

set key 0 9000 3, followed by foo as content.
6. Try to append text on both by sending

append key 0 9000 3 and then bar on the next line.
7. The instance with the feature enabled should confirm with the text

STORED that the operation succeeded while the other instance
does not.

TClouds D2.4.3 Page 27 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.5 Fault-tolerant Workflow Execution (FT-BPEL)

3.5.1 Test methodology/strategy
Similar to the CheapBFT subsystem , FT-BPEL has a complex setting and targets the masking
of errors, which makes it very difficult to design and implement automated tests. In the case
of FT-BPEL, a test configuration comprises several Apache Tomcat instances with different
settings as well as an Apache ZooKeeper service with multiple replicas. Therefore, the same
approach as with CheapBFT is chosen: The tests are carried out manually, but scripts and tools
are provided to aid the proceeding.

In a real set-up, a minimum of ten (virtual) machines connected through a TCP/IP network
would be needed. However, it is also possible to co-locate different replicas of different services
lowering the number of required machines to four (three for the replicas and one for the client).
It is assumed that a Linux system is running on all used machines and that the FT-BPEL software
components are accessible from every machine, for instance, by means of a network file system.

TClouds D2.4.3 Page 28 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.5.2 Test cases

TEST CASE ID /TC 3.5.2-1/ Fault-free operation (standard infrastructure)
DESCRIPTION FT-BPEL is designed to serve as compatible replacement with enhanced

fault-tolerance properties for existing standard BPEL infrastructures.
Therefore, the first test should attest the compatibility and that the repli-
cation of the services does not lead to faulty service implementations.
For that purpose, the same test scenario is deployed in two different
settings, first in an unreplicated, standard setting and then using the FT-
BPEL platform (/TC 3.5.2-2/). After the initialization of the system,
a client is executed that continuously invokes a composed Web service
which in turn invokes other Web services in order to process the client
requests.

TYPE Functional test
PRECONDITIONS

The test environment, which comprises at least four machines (three
replica servers and one client) that are provided with all required soft-
ware modules, is up and running.

FT-BPEL is properly configured, especially the addresses of the ma-
chines and the location of the program files are set.

STEPS
1. Set up a standard BPEL system with unreplicated BPEL process

and unreplicated Web services:

./rbpel.bash setup_scen -f 0 calc

2. Start the test:

./rbpel.bash start \
http://services.net/calculator

3. The client should continuously issue requests which should be
responded by the system.

4. Shut down and clean up:

./rbpel.bash cleanup -t

NOTES The script rbpel.bash is located at the directory bin.

TClouds D2.4.3 Page 29 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.5.2-2/ Fault-free operation (FT-BPEL infrastructure)
DESCRIPTION See /TC 3.5.2-1/
TYPE Functional test
PRECONDITIONS See /TC 3.5.2-1/
STEPS

1. Set up an FT-BPEL system with replicated BPEL process and
replicated Web services:

./rbpel.bash setup_scen -f 1 calc

2. Start the same test:

./rbpel.bash start \
http://services.net/calculator

3. Again, the client should continuously issue requests which should
be responded by the system.

4. Shut down and clean up:

./rbpel.bash cleanup -t

NOTES
The script rbpel.bash is located at the directory bin.

The same test client is used for the standard case (/TC 3.5.2-1/) and for
the replicated FT-BPEL system. This attests that FT-BPEL can be used
as a compatible replacement for standard BPEL systems. Further, the
client checks the received results with the expected values in order to
verify that the replication does not lead to faulty services.

TClouds D2.4.3 Page 30 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.5.2-3/ Operation in the presence of crashes (standard infrastruc-
ture)

DESCRIPTION In order to show that composed Web services executed by means of FT-
BPEL remain available even if the used cloud infrastructure is subject
the crashes, the same test case as in /TC 3.5.2-1/ is conducted but dur-
ing the execution instances are terminated to simulate crashes. Again,
the behavior of FT-BPEL (/TC 3.5.2-4/) is compared to the behavior of
a standard, unreplicated BPEL set-up.

TYPE Functional test
PRECONDITIONS Same as for test case /TC 3.5.2-1/ .
STEPS

1. Set up a standard BPEL system with unreplicated BPEL process
and unreplicated Web services

./rbpel.bash setup_scen -f 0 calc

2. Start the test:

./rbpel.bash start \
http://services.net/calculator

3. The client should continuously issue requests which should be
responded by the system.

4. Terminate the BPEL engine or the instance hosting the Web ser-
vices the composed Web service relies on:

./rbpel.bash kill_host 2 1

or

./rbpel.bash kill_host 1 1

5. The system is rendered unavailable even if only a single instance
is terminated.

6. Shut down and clean up:

./rbpel.bash cleanup -t

TClouds D2.4.3 Page 31 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.5.2-4/ Operation in the presence of crashes (FT-BPEL infras-
tructure)

DESCRIPTION See /TC 3.5.2-3/
TYPE Functional test
PRECONDITIONS See /TC 3.5.2-3/
STEPS

1. Set up an FT-BPEL system with replicated BPEL process and
replicated Web services:

./rbpel.bash setup_scen -f 1 calc

2. Start the same test:

./rbpel.bash start \
http://services.net/calculator

3. Again, the client should continuously issue requests which should
be responded by the system.

4. Terminate one BPEL engine replica or one replica of the Web
services the composed Web service relies on:

./rbpel.bash kill_host 2 1

or

./rbpel.bash kill_host 1 1

5. Contrary to the execution based on a standard BPEL set-up, us-
ing FT-BPEL ensures that the hosted services remain available
and that the client receives correct replies even if a BPEL engine
replica and a Web service replica are terminated.

6. Shut down and clean up:

./rbpel.bash cleanup -t

TClouds D2.4.3 Page 32 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.6 Cryptography as a Service

3.6.1 Test methodology/strategy
The Cryptography as a Service will be tested manually, since there are many diverse compo-
nents involved which do not lend themselves well for automatic testing. For instance, testing
a hypervisor, cannot be done on the same machine where the tests are executed at, due to the
fact that it needs to run on dedicated hardware because it is the most low level piece of soft-
ware running on a PC. Moreover, the required trusted boot setup requires an actual hardware
TPM to talk to in order to verify the correctness of the setup. This requires a non-trivial testing
setup. Furthermore, the interaction between the various domains (VMs) often requires manual
intervention to emulate the steps a cloud administrator or consumer would take.

In testing our Cryptography as a Service, it is essential to focus on the exact required func-
tionality. We shall not test functionality of the Xen hypervisor which do not directly relate to
the requirements of confidentiality and integrity of consumer VMs.

Our test cases reflect the customer’s requirements for security objectives throughout the
entire workflow of VM deployment. More precisely, confidentiality and integrity in order to
protect the assets from anybody else but the customer, especially from the cloud provider or
any other cloud tenants. The test cases further reflect a temporal story line from a customer’s
perspective starting at the moment he or she bundles the VM together with keys, then securely
uploads it, to the moment it is running in the verified cloud and has secure access to those keys.

3.6.2 Test cases

TEST CASE ID /TC 3.6.2-1/ Test domain builder functionality
DESCRIPTION Start up the domain builder stubdom (DomT), testing whether it can

communicate with the TPM (dependency for other tests)
TYPE Functional test
PRECONDITIONS The domain builder has ownership of the TPM
STEPS

1. Machine is powered on.
2. GRUB boots with Xen, Dom0 and DomT as multiboot modules.

xl list

3. The pubkey of the TPM has been exported.

hexdump /var/domt_pubkey.bin

TClouds D2.4.3 Page 33 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.6.2-2/ Customer makes encrypted VM available
DESCRIPTION Customer encrypts her VM with cloud key
TYPE Functional test
PRECONDITIONS Domain builder initialized (test 6.2.3.6.2-1)
STEPS

1. The customer takes a working VM image (disk image).

file disk.img

2. The image is encrypted using a symmetric key k.

./deployer.py -k domt_pubkey.bin
disk.img disk.enc disk_vmcb.enc

3. the key symmetric key k is encrypted with the asymmetric key
from test 6.2.3.6.2-1.

TEST CASE ID /TC 3.6.2-3/ Deploy and run secure image
DESCRIPTION Deploy the customer’s encrypted image to the cloud
TYPE Functional test
PRECONDITIONS Customer VM deployed (test 6.2.3.6.2-2)
STEPS

1. Using scp the customer’s image is copied to the Dom0 domain.

scp disk.enc
mihai@134.147.62.162:/home/mihai/xen/.

scp disk_vmcb.enc
mihai@134.147.62.162:/home/mihai/xen/.

2. In Dom0 the cloud admin configures the domain in
/etc/xen/domain X.cfg for this domain to have the
domc = 1 flag.

cat domain.cfg

3. The cloud admin starts the domain using
xl create /etc/xen/domain X.cfg.

xl create domain.cfg

TClouds D2.4.3 Page 34 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.6.2-4/ Test Security of CaaS
DESCRIPTION Test the avenues via which the cloud administrator can attack
TYPE Functional test
PRECONDITIONS Customer VM running (test 6.2.3.6.2-3)
STEPS

1. The customer shows a successful search for a pattern on the un-
encrypted VM.

2. The cloud admin tries in vain search for a pattern on the customers
encrypted VM.

TClouds D2.4.3 Page 35 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.7 Access Control as a Service (ACaaS)

3.7.1 Test methodology/strategy
ACaaS will be tested manually. As ACaaS prototype is serving the purpose of proof-of-concept,
the major aspects to be covered through the tests will be functionality.

A working OpenStack cloud should be ready with all those OpenStack services replaced
with our modified ACaaS-enabled version. This cloud will include at least two OpenStack
compute node, hosting nova-compute and nova-network, and one OpenStack management node,
hosting other nova services, namely nova-scheduler, nova-api, nova-volume, nova-objectstore
and glance services. The management node can at the same time acting as the compute node.
Hence at least two connected machines are needed. At least one Virtual Machine image must
be pre-configured and uploaded to glance for demonstration. This image can be as simple as a
Just-enough Linux system.

3.7.2 Test cases

TEST CASE ID /TC 3.7.2-1/ User requirement management
DESCRIPTION Test the user requirment management module. Ensure user requirement

catalogues can be added, removed and queried by administrators cor-
rectly.

TYPE Functional test
STEPS

1. Create a requirement. The correct requirement is created with a
valid requirement ID.

2. Remove a requirement. The correct requirement with the in-
tended requirement ID is removed.

3. List all requirements. All existing requirements are displayed.

TEST CASE ID /TC 3.7.2-2/ Infrastructure property management
DESCRIPTION Ensure infrastructure properties can be specified, removed and queried

correctly
TYPE Functional test
STEPS

1. Specify a property to a host and query the host’s properties. The
target host is specified with the correct properties.

2. Remove a property of a host and query the host’s properties. The
correct properties is removed from the target host.

TClouds D2.4.3 Page 36 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.7.2-3/ ACaaS-based VM scheduling
DESCRIPTION Ensure VMs with specified requirement can only run on hosts with ap-

propriate properties
TYPE Functional test
PRECONDITIONS User requirements and infrastructure security properties have been set

up (test 7.2.3.7.2-1, 7.2.3.7.2-2)
STEPS

1. Run a VM instance with at least one host satisfying its require-
ments, expecting the VM scheduled to the host with satisfying
properties

2. Run a VM instance with no host satisfying its requirements. ex-
pecting VM not scheduled.

3. Run a VM instance with at least one host not running any VM
belonging to a specified user, expecting the VM scheduled to the
host with no VM belonging to the specified user running on it.

4. Run a VM instance with all hosts running VMs belonging to a
specified user, expecting the VM not scheduled.

TClouds D2.4.3 Page 37 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.8 BFT-SMaRt

3.8.1 Test methodology/strategy
BFT-SMaRt has test cases defined using the JUnit framework. The tests are placed together
with the source code and can be executed using Java or Apache Ant. The environment to run
BFT-SMaRt and the JUnit tests must have JRE verion 1.5 or later installed. To run the test
cases using the Ant script provided with the source code it is necessary to have Apach Ant
installed. JUnit can be downloaded from www.junit.org and Apache Ant can be downloaded
from ant.apache.org. Together with the BFT-SMaRt source code there are a few demonstration
packages to be used as examples on how to use BFT-SMaRt interfaces. These demos are not
part of the test cases but can be used to see the framework running and clients using it. The
demos are in the package navigators.smart.tom.demo. Instruction to run the demo packages are
in the file README.txt, in the root of BFT-SMaRt source code.

3.8.2 Test cases
Tests in BFT-SMaRt are performed using code defined for the demo package. The tests tries to
perform different operations in BFT-SMaRt to guaranty that the protocol responds as expected.

TEST CASE ID /TC 3.8.2-1/ Test write and query of data in the regular case
DESCRIPTION The test will insert data in a key value store and queries the servers to

guarantee that data was correctly inserted.
TYPE Unit test
PRECONDITIONS JUnit framework and JRE are installed correctly.
STEPS

1. Run the test BFTMapClientTest.testRegularCase().

TEST CASE ID /TC 3.8.2-2/ Test the protocol in the presence of a faulty non leader
replica

DESCRIPTION The test will insert data in a key value store and queries the servers to
guarantee that data was correctly inserted. The test will insert and verify
data. After that a replica is turned off and insertion and query of data is
performed to verify if the protocol still responds as expected.

TYPE Unit test
PRECONDITIONS JUnit framework and JRE are installed correctly.
STEPS

1. Run the test BFTMapClientTest.testStopNonLeader().

TClouds D2.4.3 Page 38 of 78

http://www.junit.org
http://ant.apache.org

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.8.2-3/ Test the state transfer protocol
DESCRIPTION Data is inserted and verified in a key value store. A non leader replica is

turned off, data is inserted and the replica is turned on again. A different
non leader replica is turned off after that. This test verifies if the first
replica that was turned off and on again is capable of respond to requests
using the data it received from the state transfer protocol.

TYPE Unit test
PRECONDITIONS JUnit framework and JRE are installed correctly.
STEPS

1. Run the test BFTMapClientTest.testStopAndStartNonLeader().

TEST CASE ID /TC 3.8.2-4/ Test the leader change protocol
DESCRIPTION Data is inserted and verified in a key value store. The leader replica is

turned off. Requests are sent after the leader removal and results tested
to verify if the component still behaviors as expected.

TYPE Unit test
PRECONDITIONS JUnit framework and JRE are installed correctly.
STEPS

1. Run the test BFTMapClientTest.testStopLeader().

TEST CASE ID /TC 3.8.2-5/ Test the leader change protocol and state transfer protocol
DESCRIPTION Data is inserted and verified in a key value store. All replicas, includ-

ing the leader, are turned off and on again, once at a time, in a round
robin fashion. After each removal and inclusion of replicas, the state of
the application is verified to guarantee that no data was lost during the
process.

TYPE Unit test
PRECONDITIONS JUnit framework and JRE are installed correctly.
STEPS

1. Run the test BFTMapClientTest.testStopLeaders().

3.8.3 Demos
BFT-SMaRt source code includes a demo package with several examples to be used as a usage
reference. The package is navigators.smart.tom.demo. Each folder inside that pack-
age is one example containing the client and server classes. To run the demos, there is a script
in runscripts folder. Files with .sh and .bat extensions are provided. The command line
with arguments to run the scripts are described in the file README.txt, in the source root.

TClouds D2.4.3 Page 39 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.9 Resilient Object Storage (DepSky)

3.9.1 Test methodology/strategy
DepSky works with different cloud providers to store data in different servers. To test it, it is
necessary to have accounts in cloud providers, to be able to store data and analyse the stored
data. After having the accounts created it is necessary to have the user and private keys to
be used to manipulate data. DepSky has drivers written for different providers, as Amazon or
Nirvanix.

3.9.2 Test cases
In the tests described here, DepSky stores data units in four Amazon S3 servers distributed in
different locations. To define the locations there is a file configClouds under the config
directory. All tests described here contains a startup procedure which consists in: Start the
DepSky client running the code:

./DepSky_Run.sh <container_name> <client_id> <DepSky mode>

The options are described in the instructions file README.txt. For the tests performed we used

./DepSky_Run.sh container1 0 1

as the command line. Wait for the client to connect to the servers. It is confirmed by the display
of the message ”All drivers started.”. To verify that the data has been written to the cloud, it
is necessary to open the cloud provider console. In the tests written we use Amazon S3, so, to
verify the data we open the Amazon S3 console in console.aws.amazon/s3.

TEST CASE ID /TC 3.9.2-1/ Test write and query of data in the regular case
DESCRIPTION The test will run the DepSky client to write data to the cloud and then

query the cloud to verify if the data was correctly inserted.
TYPE Manual test
PRECONDITIONS Have an Amazon S3 account created with the keys written in the AWS-

Credentials.properties configuration file in the root of DepSky source
code. Have the DepSky client code, DepSky Run.sh with execution
privileges in the file system.

STEPS
1. First, DepSky client must be initialized, as described above.
2. Data is inserted, using the command write.
3. Verify in the cloud console that the buckets with the data units

was created for the locations defined in the configuration file con-
figClouds.

4. Verify if it is not possible to read useful data from the data units.
5. Query the data is retrieved with the command read.

TClouds D2.4.3 Page 40 of 78

http://console.aws.amazon/s3

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.9.2-2/ Validate DepSky confidentiality and consistency against
data loss or server is disconnected

DESCRIPTION The test will run the DepSky client to write data to the cloud, remove
the data written from f servers and query the data in the client.

TYPE Manual test
PRECONDITIONS Have an Amazon S3 account created with the keys written in the AWS-

Credentials.properties configuration file in the root of DepSky source
code. Have the DepSky client code, DepSky Run.sh with execution
privileges in the filesystem.

STEPS
1. First, DepSky client must be initialized, as described above.
2. Data is inserted, using the command write.
3. Verify in the cloud console that the buckets with the data units

was created for the locations defined in the configuration file con-
figClouds.

4. Verify if it is not possible to read useful data from the data units.
5. Choose one server from the list of servers and remove the data

units created. The data units are inside the folder with the con-
tainer name defined when the DepSky client was started.

6. Query the data is retrieved with the command read.

TEST CASE ID /TC 3.9.2-3/ Validate DepSky confidentiality and consistency for mod-
ified data

DESCRIPTION The test will run the DepSky client to write data to the cloud and modify
the data written in f servers.

TYPE Manual test
PRECONDITIONS Have an Amazon S3 account created with the keys written in the AWS-

Credentials.properties configuration file in the root of DepSky source
code. Have the DepSky client code, DepSky Run.sh with execution
privileges in the filesystem.

STEPS
1. First, DepSky client must be initialized, as described above.
2. Data is inserted, using the command write.
3. Verify in the cloud console that the buckets with the data units

was created for the locations defined in the configuration file con-
figClouds.

4. Verify if it is not possible to read useful data from the data units.
5. Choose one server from the list of servers and open the folder

with the container name defined.
6. Replace data units with files with the same name but different

content.
7. Query the data is retrieved with the command read.

TClouds D2.4.3 Page 41 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.10 LogService

3.10.1 Test methodology/strategy
The LogService is the service within the Trustworthy OpenStack infrastructure providing secure
logging functionality. The core component of the LogService is the libseclog library that
is a refactoring of the libsklog library already presented in [S+12b] (see Section 9.3.1). To
test the libseclog functionality, and hence those of the LogService, we defined a set of unit
tests using the framework for C language CUnit [KS12].

3.10.2 Test execution
To execute the tests, it’s necessary to install the library dependencies and then to compile it with
the option --enable-tests. The LogService has been developed on Debian “Jessie”, hence
the installation and execution instructions are provided considering a Debian based system.

Installation

All the libseclog dependencies could be installed using the Debian package manager, except
the libumberlog library. To install them, run the following commands:

sudo apt-get update
sudo apt-get install make autoconf libtool libssl-dev uuid-dev libjansson-dev git pkg-config

git clone https://github.com/deirf/libumberlog.git libumberlog
cd libumberlog
mkdir m4
autoreconf -i
./configure
make
sudo make install

Figure 3.1: libseclog dependencies installation

To build the library with tests enabled, run the following comands

tar zxvf libseclog-<VERSION>.tar.gz
cd libseclog
./autogen.sh
./configure --enable-ceelog --with-umberlog=/urs/local --enable-python --enable-tests
make

Figure 3.2: libseclog building commands

Test cases

The libseclog code is organised in independent logical code units, each one containing
the code that implements a specific part such as helpers functions, logging schemes related
functions and high level functions. To test all the logical code units, a single testing suite has
been defined.

TClouds D2.4.3 Page 42 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.10.2-1/ Helper, logging schemes and high level functions
DESCRIPTION Tests the helper functions (e.g. cryptographic operation and the user

notifications). Moreover, it tests also the functions implementing the
supported logging schemes (functions implementing the Schneier’s
scheme) as well as the high level functions provided by the library. The
test suite could be executed with an optional parameter (-n) that speci-
fies the number of the dummy log entries that will be generated during
the run.

TYPE Unit Test, Functional Test
PRECONDITIONS libseclog built with the --enable-tests option (See Fig-

ures 3.1 and 3.2)
STEPS

1. Move to the test directory

cd test

2. Run the command

./run_tests -n 1000

TClouds D2.4.3 Page 43 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.11 Remote Attestation Service

3.11.1 Test methodology/strategy
The test cases cover only the RA Verifier component of the Remote Attestation Service, as
it is the one developed by POL. Since RA Verifier is entirely written in Python language,
we will implement them by using the Pyunit framework.

Our test cases check the functionality of the component, as it is very critical that the service
gives the expected verification results, and accomplish this task through the black-box testing
technique. First, they verify that data have been correctly inserted into the database by perform-
ing some queries and, then, compare the results obtained from the verification of sample IMA1

measurements files with the expected ones.
Tests can be executed on a single machine and require the installation of the software speci-

fied in the deliverable D2.1.4/2.3.3 for both nodes and the following packages: python-unittest2
rpmdevtools, yum-utils (for Fedora only), apt-file (for Ubuntu only).

1Integrity Measurement Architecture: see http://linux-ima.sourceforge.net for details

TClouds D2.4.3 Page 44 of 78

http://linux-ima.sourceforge.net

D2.4.3 – Final Reference Platform and Test Case Specification

3.11.2 Test cases

TEST CASE ID /TC 3.11.2-1/ Verify DB data
DESCRIPTION This test case verifies that data have been correctly inserted into the

database.
TYPE Functional test
PRECONDITIONS The Apache Cassandra database is up and running
STEPS

1. Download the following Fedora 16 packages in a temporary di-
rectory f16-pkgs:

Pkg 1: http://kojipkgs.fedoraproject.org//packages/curl/7.21.

7/7.fc16/x86_64/curl-7.21.7-7.fc16.x86_64.rpm

Pkg 2: http://kojipkgs.fedoraproject.org//packages/curl/7.21.

7/7.fc16/x86_64/libcurl-7.21.7-7.fc16.x86_64.rpm

Pkg 3: http://kojipkgs.fedoraproject.org//packages/curl/7.21.

7/7.fc16/x86_64/libcurl-devel-7.21.7-7.fc16.x86_64.rpm

2. Execute this command to insert data into the database:

$ db/scripts/update_pkgs.sh -d $PWD/f16-pkgs -n Fedora -q 16 \
-c x86_64 -t pyunit

3. For each digest, retrieve the record stored in the database and
check the following statements:

• 976a6505edeae28ccb63b491b91bce6113e87779 is the digest of the
file /usr/bin/curl which belongs to Pkg 1

• 8c9f2d95d80d24332139bb33da33a1340b35e1d6 is the digest of the
file /usr/lib64/libcurl.so.4.2.0 which belongs to Pkg 2

• f9ca79dbbab0d2d2e190904b9fe0e451a7ce901e is the digest of the
file /usr/include/curl/curl.h which belongs to Pkg 3

4. The file /usr/bin/curl is of type executable and depends
on the following shared libraries:
libcurl.so.4, librt.so.1, libz.so.1, libc.so.6, libpthread.so.0

5. The file /usr/lib64/libcurl.so.4.2.0 is of type library
and has the following aliases:
libcurl.so, , libcurl.so.4

TClouds D2.4.3 Page 45 of 78

http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/curl-7.21.7-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/curl-7.21.7-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/libcurl-7.21.7-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/libcurl-7.21.7-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/libcurl-devel-7.21.7-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/libcurl-devel-7.21.7-7.fc16.x86_64.rpm

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.11.2-2/ Test verification of sample IMA measurements files
DESCRIPTION This test case verifies a set of sample IMA measurements files using

the RA Verifier component and compares results obtained with those
expected.

TYPE Functional test
PRECONDITIONS The Apache Cassandra database is up and running
STEPS

1. Download these Fedora 16 packages in a temp dir f16-pkgs:

Pkg 1: http://kojipkgs.fedoraproject.org//packages/coreutils/

8.12/7.fc16/x86_64/coreutils-8.12-7.fc16.x86_64.rpm

Pkg 2: http://kojipkgs.fedoraproject.org//packages/coreutils/

8.12/6.fc16/x86_64/coreutils-8.12-6.fc16.x86_64.rpm

Pkg 3: http://kojipkgs.fedoraproject.org//packages/glibc/2.

14.90/24.fc16.9/x86_64/glibc-2.14.90-24.fc16.9.x86_64.rpm

Pkg 4: http://kojipkgs.fedoraproject.org//packages/glibc/2.

14.90/24.fc16.7/x86_64/glibc-2.14.90-24.fc16.7.x86_64.rpm

2. Execute this command to insert data into the database:

$ db/scripts/update_pkgs.sh -d $PWD/f16-pkgs -n Fedora -q 16 \
-c x86_64 -t pyunit

3. Manually set update type into the database:

coreutils-8.12-7.fc16.x86_64.rpm: bugfix
coreutils-8.12-6.fc16.x86_64.rpm: bugfix
glibc-2.14.90-24.fc16.9.x86_64.rpm: security
glibc-2.14.90-24.fc16.7.x86_64.rpm: bugfix

4. Generate the sample IMA measurements files as follows:

Sample A: boot aggregate + digests of files from Pkgs 1,3
Sample B: same as above + an unknown digest
Sample C: same as above + a digest of file from Pkg 2
Sample D: same as above + a digest of file from Pkg 4

5. Verify sample IMA measurements files:

$ verifier/ra_verifier.py -i <sample_ima_measurements_file>

The script should return the following output:

Sample A: 614 ok, 0 unknown, 0 pkg-security, 0 pkg-not-security
Sample B: 614 ok, 1 unknown, 0 pkg-security, 0 pkg-not-security
Sample C: 614 ok, 1 unknown, 0 pkg-security, 1 pkg-not-security
Sample D: 507 ok, 1 unknown, 109 pkg-security, 0 pkg-not-security

where each field indicates the num of measurements of files that:

• ok: have a known digest and belong to the most recent package
• unknown: have an unknown digest
• pkg-security: belong to a package with security updates
• pkg-not-security: belong to a package with other updates

TClouds D2.4.3 Page 46 of 78

http://kojipkgs.fedoraproject.org//packages/coreutils/8.12/7.fc16/x86_64/coreutils-8.12-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/coreutils/8.12/7.fc16/x86_64/coreutils-8.12-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/coreutils/8.12/6.fc16/x86_64/coreutils-8.12-6.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/coreutils/8.12/6.fc16/x86_64/coreutils-8.12-6.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/glibc/2.14.90/24.fc16.9/x86_64/glibc-2.14.90-24.fc16.9.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/glibc/2.14.90/24.fc16.9/x86_64/glibc-2.14.90-24.fc16.9.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/glibc/2.14.90/24.fc16.7/x86_64/glibc-2.14.90-24.fc16.7.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/glibc/2.14.90/24.fc16.7/x86_64/glibc-2.14.90-24.fc16.7.x86_64.rpm

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.11.2-3/ Verify DB data (Ubuntu)
DESCRIPTION This test case verifies that data from some Ubuntu packages have been

correctly inserted into the database.
TYPE Functional test
PRECONDITIONS The Apache Cassandra database is up and running
STEPS

1. Download the following Ubuntu packages in a temporary direc-
tory ubuntu-pkgs:

Pkg 1: http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/c/

curl/curl_7.22.0-3ubuntu4_amd64.deb

Pkg 2: http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/c/

curl/libcurl3_7.22.0-3ubuntu4_amd64.deb

2. Execute this command to insert data into the database:

$ db/scripts/update_pkgs.sh -d $PWD/ubuntu-pkgs -n Ubuntu \
-q precise -c x86_64 -t pyunit

3. For each digest, retrieve the record stored in the database and
check the following statements:

• ecdb5b7ee4d0a0078007f61daf7b72c33bd3b350 is the digest of the
file /usr/bin/curl which belongs to Pkg 1

• ea9a8957a3240b42826cabac706de50093f35647 is the digest of
the file /usr/lib/x86 64-linux-gnu/libcurl.so.4.2.0 which be-
longs to Pkg 2

4. The file /usr/bin/curl is of type executable and depends
on the following shared libraries:
libcurl.so.4, librt.so.1, libz.so.1, libc.so.6

5. The file /usr/lib/x86 64-linux-gnu/libcurl.so.4.2.0

is of type library and has the following aliases:
libcurl.so.4, libcurl.so.3

TClouds D2.4.3 Page 47 of 78

http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/c/curl/curl_7.22.0-3ubuntu4_amd64.deb
http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/c/curl/curl_7.22.0-3ubuntu4_amd64.deb
http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/c/curl/libcurl3_7.22.0-3ubuntu4_amd64.deb
http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/c/curl/libcurl3_7.22.0-3ubuntu4_amd64.deb

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.11.2-4/ Verify History of Ubuntu Packages
DESCRIPTION This test case verifies that versions of Ubuntu packages stored into the

database are ordered correctly from the oldest to the most recent.

TYPE Functional test
PRECONDITIONS The Apache Cassandra database is up and running
STEPS

1. Download the following Ubuntu packages in a temporary direc-
tory ubuntu-pkgs:

Pkg 1: http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/

vim/vim_7.3.429-2ubuntu2_amd64.deb’

Pkg 2: http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/

vim/vim_7.3.429-2ubuntu2.1_amd64.deb’

Pkg 3: http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/

vim/vim_7.3.547-4ubuntu1_amd64.deb’

Pkg 4: http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/

vim/vim_7.3.547-4ubuntu1.1_amd64.deb’

2. Execute this command to insert data into the database:

$ db/scripts/update_pkgs.sh -d $PWD/ubuntu-pkgs -n Ubuntu
-q precise -c x86_64 -t pyunit

3. The list of versions stored for the vim package should contain the
following items in the same order:

• 2:7.3.429-2ubuntu2

• 2:7.3.429-2ubuntu2.1

• 2:7.3.547-4ubuntu1

• 2:7.3.547-4ubuntu1.1

TClouds D2.4.3 Page 48 of 78

http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/vim/vim_7.3.429-2ubuntu2_amd64.deb'
http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/vim/vim_7.3.429-2ubuntu2_amd64.deb'
http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/vim/vim_7.3.429-2ubuntu2.1_amd64.deb'
http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/vim/vim_7.3.429-2ubuntu2.1_amd64.deb'
http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/vim/vim_7.3.547-4ubuntu1_amd64.deb'
http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/vim/vim_7.3.547-4ubuntu1_amd64.deb'
http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/vim/vim_7.3.547-4ubuntu1.1_amd64.deb'
http://ubuntu.mirror.cambrium.nl/ubuntu/pool/main/v/vim/vim_7.3.547-4ubuntu1.1_amd64.deb'

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.11.2-5/ Verify Shared Libraries List for Executables
DESCRIPTION This test case verifies that the list of shared libraries related to an ex-

ecutable, obtained by reading from the database, the dependencies of
each library and the executable itself, is the same of that displayed by
the ldd command.

TYPE Functional test
PRECONDITIONS The Apache Cassandra database is up and running
STEPS

1. Create two new directories for testing, called tests and
tests/tmp

2. Find the ELF binaries in the /usr/sbin directory
3. For each binary, obtain the list of shared libraries through the ldd

command, that will be the expected result
4. For each binary, download the package that contains the exe-

cutable itself and the list of shared libraries previously obtained
through the command:

$ yumdownloader --resolve --destdir tests/tmp \
--archlist=x86_64 <binary or shared library>

5. Insert data from downloaded packages into the database by exe-
cuting the command:

$ db/scripts/update_pkgs.sh -d $PWD/tests/tmp \
-n Fedora -q 16 -c x86_64 -t pyunit

6. Obtain from the database the dependencies for each shared library
extracted from the ELF header

7. For each executable, retrieve its dependencies as done in the pre-
vious step and determine from them the full list of shared libraries
by recursively obtaining the dependencies of previously found el-
ements.

8. Compare the result of the previous step with shared libraries ob-
tained by executing the ldd command (the test passes if both list
are identical).

TClouds D2.4.3 Page 49 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.12 Ontology-based Reasoner-Enforcer

3.12.1 Test methodology/strategy
The following test cases cover the Enforcer part (the only delivered) of the Ontology-based
Reasoner subsystem. In particular, they allow to verify, through the black-box technique, that
Extended Libvirt (the main part of the Enforcer) configures correctly the Open vSwitch compo-
nent. To do so, the test cases employ two sample XML configuration files to create two virtual
networks and compare, after these files have been sent to Libvirt, the current configuration of
the br-backbone switch with what is expected.

The only requirement to run the following test cases is to install the packages of Extended
Libvirt and Open vSwitch, distributed as part of the D2.1.4/2.3.3 deliverable, by executing the
following command:

$ sudo dpkg -i *libvirt* openvswitch-datapath-dkms openvswitch-switch

TClouds D2.4.3 Page 50 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3.12.2 Test cases

TEST CASE ID /TC 3.12.2-1/ Create a Backbone Network
DESCRIPTION This test case verifies that Extended Libvirt, a component of the Ontology-

based Reasoner subsystem, configures a Backbone Network correctly.
TYPE Functional test
PRECONDITIONS Extended Libvirt is up and running
STEPS

1. Creates the XML configuration file, named net-backbone.xml, for
the sample Backbone Network:

<network>
<name>net-backbone</name>
<bridge name="br-backbone" type="openvswitch" stp="on"

delay="0" />
<tunnel>
<remoteip address="192.168.122.101"/>
<device name="gre-1"/>
</tunnel>
</network>

2. Create and start the Backbone Network in Extended Libvirt by executing
the command:

$ sudo virsh net-create net-backbone.xml

3. Verify that the string net-backbone is present in the list of started
networks by executing:

$ sudo virsh net-list

4. Verify the Open vSwitch configuration by executing:

$ sudo ovs-vsctl show

5. Verify that the output of the command executed in the previous step
contains the following text:

Bridge br-backbone
Port br-backbone
Interface br-backbone
type: internal
Port br-backbone-nic
Interface br-backbone-nic
Port "gre-1"
Interface "gre-1"
type: gre
options: {remote_ip="192.168.122.101"}

TClouds D2.4.3 Page 51 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

TEST CASE ID /TC 3.12.2-2/ Create a TVD Network
DESCRIPTION This test case verifies that Extended Libvirt, a component of the Ontology-

based Reasoner subsystem, configures a TVD Network correctly.
TYPE Functional test
PRECONDITIONS Extended Libvirt is up and running and the Backbone Network of the previous

test case has been created
STEPS

1. Creates the XML configuration file, named net-tvd.xml, for the
sample TVD Network:

<network>
<name>net-tvd</name>
<bridge name="br-tvd" type="openvswitch"

sourcebridge="br-backbone" stp="on" delay="0"/>
<portgroup name="pgroup-tvd" default="yes">
<vlan>
<tag id="1"/>
</vlan>
<virtualport type="openvswitch"/>
</portgroup>
</network>

2. Create and start the TVD Network in Extended Libvirt by executing the
command:

$ sudo virsh net-create net-tvd.xml

3. Verify that the string net-tvd is present in the list of started networks
by executing:

$ sudo virsh net-list

4. Verify the Open vSwitch configuration by executing:

$ sudo ovs-vsctl show

5. Verify that the output of the command executed in the previous step
contains the following text:

Bridge br-backbone
Port br-backbone
Interface br-backbone
type: internal

Port "br-tvd"
tag: 1
Interface "br-tvd"
type: internal

Port br-backbone-nic
Interface br-backbone-nic
Port "gre-1"
Interface "gre-1"
type: gre
options: {remote_ip="192.168.122.101"}

TClouds D2.4.3 Page 52 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Chapter 4

Test results

Chapter Authors: Roberto Sassu (POL), Paolo Smiraglia (POL); Alexander Buerger, Norbert Schirmer
(SRX); Alysson Bessani, Marcel Henrique dos Santos (FFCUL); Sören Bleikertz, Zoltan Nagy (IBM);
Imad M. Abbadi, Anbang Ruad (OXFD); Johannes Behl, Klaus Stengel (TUBS); Mihai Bucicoiu, Sven
Bugiel, Hugo Hideler, Stefan Nürnberger (TUDA).

As in Year 2, Activity 2 partners conducted two type of testing activities: testing of each individual
subsystem and integration testing. Regarding the first, each partner revised his test plans, by modifying
or adding new test cases to reflect modifications that were eventually done in the subsystems released
this year. The final test plans are provided in Chapter 3.

Regarding the second activity, the efforts were concentrated on ensuring that developed subsystems
were integrated correctly in the respective prototype (Trustworthy OpenStack, and TrustedInfrastructure
Cloud). To achieve this goal, Activity 2 partners performed regression testing on the Trustworthy Open-
Stack by executing OpenStack test suites through our Jenkins infrastructure (described in Appendix A
of the D2.4.2 [S+12a]) deliverable, so that they can ensure that the prototype is ready from the technical
point of view. For TrustedInfrastructure Cloud the tests were performed manually. Then, Activity 3
partners performed validation activities on the prototype, whose specifications and results are provided
respectively in the D3.3.3 [Abi13] and D3.3.4 [A+13] deliverables, to verify that the prototypes are
working correctly from the applications developers perspective.

In the following, we provide these contributions: the results of regression testing for the Trustworthy
OpenStack prototype and the results for the test cases defined for each subsystem.

4.1 Trustworthy OpenStack Prototype
One main development activity done during the third year consisted in porting the TClouds patches
released for OpenStack Essex to Folsom. With small tweaking, we adapted our infrastructure to build
packages and test the code of the newer OpenStack version. Further, we took advantage of the work done
by OpenStack developers to verify whether porting our patches to Folsom did not introduce errors in the
original code used for the Year 3 prototype.

We recall that submitting of a patch to our Code Review site (https://review.tclouds-project.
eu) causes the execution of specific tests by Jenkins:

• merge: verify whether the submitted patch applies on top of the GIT branch specified;

• pep8: verify whether there are code style issues by using PEP8;

• python27: execute unit tests by using python 2.7 as a script interpreter;

• docs: verify whether the documentation is generated correctly;

• selenium: execute user interface tests with Selenium (for the Horizon service only).

TClouds D2.4.3 Page 53 of 78

https://review.tclouds-project.eu
https://review.tclouds-project.eu

D2.4.3 – Final Reference Platform and Test Case Specification

In the following, we are providing the results of the tests executed for the following Trustworthy
OpenStack components: Nova, Python-novaclient, Quantum, Horizon. Figures 4.1, 4.2, 4.3 and 4.4
show that all tests for the four components were completed successfully.

Figure 4.1: Nova tests results.

4.1.1 LogService
The Listing 4.1 shows the output produced by the testing framework used to perform the unit tests for
the LogService described in the Test Case /TC 3.10.2-1/ . As reported in the Listing 4.1, all the unit tests
produced a positive result.

./run_tests -n 1000

CUnit - A unit testing framework for C - Version 2.1-2
http://cunit.sourceforge.net/

Suite: helper test suite
Test: timeval2ascii() ...passed
Test: timeval2usec() ...passed
Test: X509_fingerprint() ...passed
Test: X509_vrfy() ...passed
Test: digest() ...passed
Test: encrypt() ...passed
Test: decrypt() ...passed
Test: hmac() ...passed
Test: b64_enc() ...passed
Test: b64_dec() ...passed
Test: pke_encrypt() ...passed
Test: pke_decrypt() ...passed
Test: sign() ...passed
Test: sign_verify() ...passed
Test: tlv_create() ...passed
Test: tlv_parse() ...passed
Test: SENTINEL ...passed

Suite: sk test suite
Test: sk_new_ctx() ...passed

TClouds D2.4.3 Page 54 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Figure 4.2: Python-novaclient tests results.

Figure 4.3: Quantum tests results.

TClouds D2.4.3 Page 55 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Figure 4.4: Horizon tests results.

Test: sk_init_ctx() ...passed
Test: sk_open_step_1() ...passed
Test: sk_open_step_2() ...passed
Test: sk_log() ...passed
Test: sk_retrieve_sessions() ...passed
Test: sk_vrfy_ctx_new() ...passed
Test: sk_verify() ...passed
Test: sk_vrfy_ctx_free() ...passed
Test: sk_close() ...passed
Test: sk_free_ctx() ...passed
Test: SENTINEL ...passed

Suite: seclog test suite
Test: seclog_new_ctx() ...passed
Test: seclog_init() ...passed
Test: seclog_open() ...passed
Test: seclog_log() ...(elapsed time: 1.343607) passed
Test: seclog_retrieve_sessions() ...passed
Test: seclog_verify() ...(elapsed time_1: 1.309146) (elapsed time_2: 0.006265) passed
Test: seclog_close() ...passed
Test: seclog_free_ctx() ...passed
Test: SENTINEL ...passed

Run Summary: Type Total Ran Passed Failed Inactive
suites 3 3 n/a 0 0
tests 38 38 38 0 0

asserts 3672 3672 3672 0 n/a

Elapsed time = 28.250 seconds

Listing 4.1: Unit test results for the core library of the LogService

4.1.2 Remote Attestation Service
The RA Verifier module of the Remote Attestation Service subsystem has been tested according to the
test plan in Chapter 3. Test cases have been implemented in a script, called test cases.py, so that
they can be run in a automatic way from the console. In the following, there is the output of the script,

TClouds D2.4.3 Page 56 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

executed at 2013-09-09.

runTest (__main__.IMAMeasurementsVerificationTestCase) ... ok
runTest (__main__.VerifyDBDataTestCase) ... ok
runTest (__main__.VerifyDBDataUbuntuTestCase) ... ok
runTest (__main__.VerifyDBLibDataTestCase) ... ok
runTest (__main__.VerifyHistoryUbuntuPackagesTestCase) ... ok

--
Ran 5 tests in 139.860s

OK

Listing 4.2: Test results for the RA Service

As depicted in the listing above, all tests were completed successfully.

4.1.3 Cryptography as a Service
We successfully executed the tests from the test plan in Chapter 3 at 2013-09-05. The tests were ran in
a manual, consecutive fashion as described in the test plan. The tests were run in our Xen development
environment.

Test Case Date Result
/TC 3.6.2-1/ 2013-09-05 passed
/TC 3.6.2-2/ 2013-09-05 passed
/TC 3.6.2-3/ 2013-09-05 passed
/TC 3.6.2-4/ 2013-09-05 passed

In the following the output of the various steps of the performed tests is reported.

xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 1023 8 r----- 46.8
Domain-T 1 1024 1 -b---- 0.1

Listing 4.3: CaaS test case /TC 3.6.2-1/ – step #2

hexdump /var/domt_pubkey.bin
0000000 0000 0100 0300 0100 0000 0c00 0000 0008
0000010 0000 0200 0000 0000 0000 0001 7688 26fa
0000020 a134 7aa5 9865 a22f 607c ec9e b4ab a30d
0000030 871a 0b54 e58a 7855 b0f5 6863 b237 269a
0000040 0743 7cda 05c1 18e4 e7ed 7a51 ed66 c08c
0000050 841d ea95 dd2d 0526 5340 fbd1 5922 52e8
0000060 b99c 319d a3fd 7e4d 6a16 140e 3838 71bd
0000070 3003 a6d8 c313 36b9 9e56 c708 e8c0 0e40
0000080 eddd 015f f223 270f 0827 367a a842 bbce
0000090 0919 e673 b72f fff2 f8cc 3fa8 b628 9e12
00000a0 38cc f67b 4b9c d83a d597 efc7 271c f21f
00000b0 fbdf 0d15 3764 ea9b 63b7 a58d 7102 45be
00000c0 6448 c66e e3cb 2ca8 37bb 290c 1b19 4c42
00000d0 8125 0f91 69df 1e9e 9235 ec27 1048 c3b2
00000e0 d954 7128 7421 5c3d afd8 544d ce73 765d
00000f0 56ad 70d9 8034 b5f7 5e74 df35 738d f983
0000100 ce98 124e ee30 8d62 ca9c d004 2139 7500
0000110 85a7 8798 803b 64c0 9db6 cbf9
000011c

Listing 4.4: CaaS test case /TC 3.6.2-1/ – step #3

TClouds D2.4.3 Page 57 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

file disk.img
disk.img: Linux rev 1.0 ext2 filesystem data, UUID=77291821-bceb-4eae-9ab1-3f8a7adf1b48 (large

files)

Listing 4.5: CaaS test case /TC 3.6.2-2/ – step #1

./deployer.py -k domt_pubkey.bin disk.img disk.enc disk_vmcb.enc

*** TU-Darmstadt CaaS/SBS cloud deployer ***

Python: 3.2.3 (default, Oct 19 2012, 20:10:41)
[GCC 4.6.3]

STAGE 1: encrypting VM

Encrypting file of 568.0MB: 0%...25%...50%...75%...100% in 29s (19.3MB/s)
=> 1163264 ESSIV-encrypted sectors written from disk.img to disk.enc

STAGE 2: encrypting symmetric key

read 284 bytes from domt_pubkey.bin
(TSPI) Attempting: creating object which holds RSA pubkey...
(TSPI) Attempting: loading the RSA pubkey...
(TSPI) Attempting: creating object which holds plaintext...
(TSPI) Attempting: binding plaintext to the pubkey...
(TSPI) Attempting: extracting the ciphertext...
(TSPI) success: bind() finished. Length of ciphertext: 256 bytes
256 bytes written with RSA ciphertext to disk_vmcb.enc
graceful exit

Listing 4.6: CaaS test case /TC 3.6.2-2/ – steps #2 and #3

scp disk.enc mihai(at)134.147.62.162:/home/mihai/xen/.
scp disk_vmcb.enc mihai(at)134.147.62.162:/home/mihai/xen/.

Listing 4.7: CaaS test case /TC 3.6.2-3/ – step #1

cat domain.cfg
Kernel image file.
kernel = "/home/mihai/xen/vmlinuz"
ramdisk = "/home/mihai/xen/initramfs"

Cryptoproxy additions.
domc = 1
domc_vmcb = "/home/mihai/xen/vmcb.enc"
memory = 128
name = "guest"
#disk = [’file:/home/mihai/xen/disk.img,xvda1,w’]
#disk = [’file:/home/mihai/xen/disk.img,xvda1,w’]
domc_disk = [’file:/home/mihai/xen/disk.enc,xvda1,w’]
kernel cmdline.
root = "/dev/xvda1 ro debug"
extra = "5"

Listing 4.8: CaaS test case /TC 3.6.2-3/ – step #2

xl create domain.cfg
Parsing config file domain.cfg
do_domain_create We are creating via domT.

==== printing domain config ====

TClouds D2.4.3 Page 58 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

(domain
(domid -1)
(create_info)
(domc 1)
(hvm 0)
(hap 1)
(oos 1)
(ssidref 0)
(name guest)
(cpupool Pool-0)
(xsdata (null))
(platformdata (null))
(build_info)
(max_vcpus 1)
(tsc_mode 0)
(max_memkb 131072)
(target_memkb 131072)
(nomigrate 0)
(image

(linux 0)
(kernel /home/mihai/xen/vmlinuz)
(cmdline root=/dev/xvda1 ro debug 5)
(ramdisk /home/mihai/xen/initramfs)

)
)
(domc image info

(domc_vmcb /home/mihai/xen/vmcb.enc)
)
(DC device

(DC tap
(backend_domid 0)
(frontend_domid 0)
(physpath /home/mihai/xen/disk.enc)
(phystype 2)
(virtpath xvda1)
(unpluggable 0)
(readwrite 1)
(is_cdrom 0)

)
)

)
==== domain config ====

creating device model for domid 2
creating device model for domid 3
[1] Exit libxl_domain_create_new.
Daemon running with PID 3114

xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 1023 8 r----- 75.1
Domain-T 1 1024 1 -b---- 0.4
guest 2 128 1 -b---- 2.0
guest-domc 3 64 1 -b---- 0.4

xl console guest
[... output missing ...]
Debian GNU/Linux 7.0 CaaS hvc0

CaaS login: root (automatic login)
Last login: Tue Apr 30 14:29:44 UTC 2013 on hvc0
Linux CaaS 3.2.0-4-amd64 #1 SMP Debian 3.2.41-2 x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
-bash: /setup.sh: No such file or directory
root(at)CaaS:˜#

TClouds D2.4.3 Page 59 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Listing 4.9: CaaS test case /TC 3.6.2-3/ – step #3

hexdump -v -C disk.img | grep passwd
002a6040 67 70 61 73 73 77 64 2e 31 2e 67 7a 00 00 00 00 |gpasswd.1.gz....|
002a6050 20 00 15 01 67 70 61 73 73 77 64 2e 31 2e 67 7a | ...gpasswd.1.gz|
002a6070 94 0f 15 01 67 70 61 73 73 77 64 2e 31 2e 67 7a |....gpasswd.1.gz|
002aa2a0 77 05 00 00 14 00 0c 01 67 70 61 73 73 77 64 2e |w.......gpasswd.|
002aa3b0 67 70 61 73 73 77 64 2e 31 2e 67 7a 2e 64 70 6b |gpasswd.1.gz.dpk|
002aa3d0 67 70 61 73 73 77 64 2e 31 2e 67 7a 2e 64 70 6b |gpasswd.1.gz.dpk|
002aa3f0 70 61 73 73 77 64 2e 31 2e 67 7a 2e 64 70 6b 67 |passwd.1.gz.dpkg|
002b92a0 90 05 00 00 14 00 0c 01 67 70 61 73 73 77 64 2e |........gpasswd.|
002b93b0 67 70 61 73 73 77 64 2e 31 2e 67 7a 2e 64 70 6b |gpasswd.1.gz.dpk|
002b93d0 67 70 61 73 73 77 64 2e 31 2e 67 7a 2e 64 70 6b |gpasswd.1.gz.dpk|
002b93f0 70 61 73 73 77 64 2e 31 2e 67 7a 2e 64 70 6b 67 |passwd.1.gz.dpkg|
002d9180 cf 05 00 00 14 00 0c 01 67 70 61 73 73 77 64 2e |........gpasswd.|
002d92a0 20 00 15 01 67 70 61 73 73 77 64 2e 31 2e 67 7a | ...gpasswd.1.gz|
002d92c0 3c 00 15 01 67 70 61 73 73 77 64 2e 31 2e 67 7a |<...gpasswd.1.gz|
002d92e0 1c 00 14 01 70 61 73 73 77 64 2e 31 2e 67 7a 2e |....passwd.1.gz.|
002d9300 70 61 73 73 77 64 2e 31 2e 67 7a 2e 64 70 6b 67 |passwd.1.gz.dpkg|
010030d0 65 63 75 72 69 74 79 2f 6f 70 61 73 73 77 64 20 |ecurity/opasswd |
020347d0 2d 70 72 6f 78 79 2d 70 61 73 73 77 64 3d 50 41 |-proxy-passwd=PA|
02080ae0 72 6f 78 79 2d 70 61 73 73 77 64 3d 48 41 53 a3 |roxy-passwd=HAS.|
020961e0 70 61 73 73 77 64 3d 50 41 53 53 20 20 20 20 20 |passwd=PASS |
020a6fd0 2d 66 74 70 2d 70 61 73 73 77 64 3d 47 45 53 4c |-ftp-passwd=GESL|
020bf7c0 62 20 67 65 74 70 61 73 73 77 64 2d 67 6e 75 20 |b getpasswd-gnu |
0210ccf0 68 74 74 70 70 61 73 73 77 64 00 68 74 74 70 70 |httppasswd.httpp|
0210ce80 72 6f 78 79 70 61 73 73 77 64 00 70 72 6f 78 79 |roxypasswd.proxy|
0210fdf0 74 70 2d 70 61 73 73 77 64 00 68 74 74 70 2d 70 |tp-passwd.http-p|
0210ff80 78 79 2d 70 61 73 73 77 64 00 70 72 6f 78 79 2d |xy-passwd.proxy-|

Listing 4.10: CaaS test case /TC 3.6.2-4/ – step #1

hexdump -v -C disk.enc | grep passwd
#

Listing 4.11: CaaS test case /TC 3.6.2-4/ – step #2

4.1.4 ACaaS
We tested ACaaS Scheduler with the steps described in the test plan Chapter 3 at 2013-09-06. These tests
were successfully executed manually in a consecutive fashion.

Test Case Date Result
/TC 3.7.2-1/ 2013-09-06 Passed
/TC 3.7.2-2/ 2013-09-06 Passed
/TC 3.7.2-3/ 2013-09-06 Passed

nova-manage requirement
/usr/local/bin/nova-manage category action [<args>]
Available actions for requirement category:

create
list
remove

nova-manage requirement list
ID Reqs
1 location

TClouds D2.4.3 Page 60 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

nova-manage requirement create --requirements=‘‘ids’’

nova-manage requirement list
ID Reqs
1 location
2 ids

nova-manage requirement remove --id=2

nova-manage requirement list
ID Reqs
1 location

Listing 4.12: ACaaS test case /TC 3.7.2-1/

nova-manage host get_properties --host=TCloud1
Properties of host TCloud1 are:
location: us

nova-manage host add_properties --host=TCloud1 --properties=‘‘{’ids’ : ’yes’}’’

nova-manage host get_properties --host=TCloud1
Properties of host TCloud1 are:
location: us
ids: yes

nova-manage host remove_properties --host=TCloud1 --properties=‘‘[’ids’]’’

nova-manage host get_properties --host=TCloud1
Properties of host TCloud1 are:
location: us

Listing 4.13: ACaaS test case /TC 3.7.2-2/

nova-manage requirement list
ID Reqs
1 location

nova-manage host get_properties --host=TCloud1
Properties of host TCloud1 are:
location: us

nova-manage host get_properties --host=TCloud2
Properties of host TCloud2 are:
location: uk

nova boot --flaver 1 --image test_acaas --req=‘‘{1:’us’}’’ vm-us

cat /var/log/nova/nova-scheduler.log | grep ACaaS
ACaaS: got req_list: {’location’: ’us’}
ACaaS: hosts for scheduling [’TCloud1’, ’TCloud2’]
ACaaS: get security_properties of TCloud1: {u’location’: u’us’}
ACaaS: satisfy_requirements: req = {’location’: ’us’}
ACaaS: adding host TCloud1 for scheduling
ACaaS: get security_properties of TCloud2: {u’location’: u’uk’}
ACaaS: satisfy_requirements: req = {’location’: ’us’}
ACaaS: Requirement value ’us’ not matched
ACaaS: filtered_hosts: [’TCloud1’]

Listing 4.14: ACaaS test case /TC 3.7.2-3/ – step #1

TClouds D2.4.3 Page 61 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

nova-manage requirement list
ID Reqs
1 location

nova-manage host get_properties --host=TCloud1
Properties of host TCloud1 are:
location: us

nova-manage host get_properties --host=TCloud2
Properties of host TCloud2 are:
location: uk

nova boot --flaver 1 --image test_acaas --req=‘‘{1:’de’}’’ vm-de

cat /var/log/nova/nova-scheduler.log | grep ACaaS
ACaaS: got req_list: {’location’: ’de’}
ACaaS: hosts for scheduling [’TCloud1’, ’TCloud2’]
ACaaS: get security_properties of TCloud1: {u’location’: u’us’}
ACaaS: satisfy_requirements: req = {’location’: ’de’}
ACaaS: Requirement value ’de’ not matched
ACaaS: get security_properties of TCloud2: {u’location’: u’uk’}
ACaaS: satisfy_requirements: req = {’location’: ’de’}
ACaaS: Requirement value ’de’ not matched
ACaaS: filtered_hosts: []

Listing 4.15: ACaaS test case /TC 3.7.2-3/ – step #2

nova boot --flaver 1 --image test_acaas --req=‘‘{’x’:[’user_1’]}’’ vm_excl_u1

cat /var/log/nova/nova-scheduler.log | grep ACaaS
ACaaS: got req_list: {’_exclude-user’: ’user_1’}
ACaaS: hosts for scheduling [’TCloud1’, ’TCloud2’]
ACaaS: get security_properties of TCloud1: {u’location’: u’us’}
ACaaS: getting user name list: user_1, user_2
ACaaS: Found excluded users: user_1
ACaaS: get security_properties of TCloud2: {u’location’: u’uk’}
ACaaS: getting user name list: user_2, user_3
ACaaS: adding host TCloud2 for scheduling
ACaaS: filtered_hosts: [’TCloud2’]

Listing 4.16: ACaaS test case /TC 3.7.2-3/ – step #3

nova boot --flaver 1 --image test_acaas --req=‘‘{’x’:[’user_2’]}’’ vm_excl_u2

cat /var/log/nova/nova-scheduler.log | grep ACaaS
ACaaS: got req_list: {’_exclude-user’: ’user_2’}
ACaaS: hosts for scheduling [’TCloud1’, ’TCloud2’]
ACaaS: get security_properties of TCloud1: {u’location’: u’us’}
ACaaS: getting user name list: user_1, user_2
ACaaS: Found excluded users: user_2
ACaaS: get security_properties of TCloud2: {u’location’: u’uk’}
ACaaS: getting user name list: user_2, user_3
ACaaS: Found excluded users: user_2
ACaaS: filtered_hosts: []

Listing 4.17: ACaaS test case /TC 3.7.2-3/ – step #4

TClouds D2.4.3 Page 62 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

4.1.5 Ontology-based Reasoner/Enforcer
The Ontology-based Reasoner/Enforcer subsystem has been tested accordingly to the test plan provided
in Chapter 3. The test was done in a virtual machine with Ubuntu Precise 12.04.3 LTS with the latest
version of Extended Libvirt and Open vSwitch installed from the Jenkins Server repository. The following
table reports the results of the test executed on this subsystem.

Test Case Date Result
/TC 3.12.2-1/ 2013-09-09 passed
/TC 3.12.2-2/ 2013-09-09 passed

In addition, the Ontology-based Reasoner/Enforcer subsystem has been tested by executing the Lib-
virt test suite to check whether POL patches break existing functionalities. The relevant output of the
make check command (executed at 2013-09-09) is provided below:

...

=======================
All 188 tests passed
(23 tests were not run)
=======================

...

======================
All 71 tests passed
(3 tests were not run)
======================

...

Listing 4.18: Output of make check (Extended Libvirt)

4.2 TrustedInfrastructure Cloud Prototype
We successfully tested all functional tests described in Chapter 3 within a prototypical but automatically
reproducible environment.

Test Case Date Result
/TC 3.2.2-1/ 2012-06-20 passed
/TC 3.2.2-2/ 2012-06-20 passed
/TC 3.2.2-3/ 2012-06-20 passed
/TC 3.2.2-4/ 2012-06-20 passed
/TC 3.2.2-5/ 2013-02-22 passed
/TC 3.2.2-6/ 2013-02-22 passed
/TC 3.2.2-7/ 2013-02-22 passed
/TC 3.2.2-8/ 2013-02-22 passed

4.3 BFT-SMaRt
We successfully executed the tests described in the Chapter 3. The results are listed below

TClouds D2.4.3 Page 63 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Test Case Date Result
/TC 3.8.2-1/ 2013-09-09 passed
/TC 3.8.2-2/ 2013-09-09 passed
/TC 3.8.2-3/ 2013-09-09 passed
/TC 3.8.2-4/ 2013-09-09 passed
/TC 3.8.2-5/ 2013-09-09 passed

4.4 Resilient Object Storage (DepSky)
We successfully executed the tests described in the Chapter 3. The results are listed below

Test Case Date Result
/TC 3.9.2-1/ 2013-09-09 passed
/TC 3.9.2-2/ 2013-09-09 passed
/TC 3.9.2-3/ 2013-09-09 passed

In the test /TC 3.9.2-1/ the query returned the expected value. Data read from the cloud using the
cloud provided console wasn’t useful.

In the test /TC 3.9.2-2/ the query returned the expected value. Data read from the cloud using the
cloud provided console wasn’t useful. After removing data from one of the servers the data read from
the DepSky client was still the same written in the begining.

In the test /TC 3.9.2-3/ the query returned the expected value. Data read from the cloud using the
cloud provided console wasn’t useful. After corrupting data from one of the servers the data read from
the DepSky client was still the same written in the beginning.

4.5 Tailored Memcached
The Tailored Memcached was tested using two different scenarios. In the first one we check the de-
ployment and general usability of the service, while in the second one we verify that the reconfiguration
actually enables or disables the corresponding features as advertised.

4.5.1 Sevice deployment
For the first test, described in /TC 3.4.3-1/ , we deployed the Tailored Memcached on a Xen node and
checked whether the service works using the standard memslap test program. A transcript with the DHCP
configuration on top and the results of the menslap program on the bottom is shown in Listing 4.19.

00:16:3e:28:07:cc -> ff:ff:ff:ff:ff:ff
Network stack initialized.
00:16:3e:28:07:cc -> ff:ff:ff:ff:ff:ff
Bound to: 169.254.0.147
169.254.0.147

$ memslap --initial-load=100 --execute-number=100 --test=get \
--servers=169.254.0.147

Threads connecting to servers 1
Took 0.141 seconds to read data

Listing 4.19: Transcript of memslap test

The test produced the expected result.

TClouds D2.4.3 Page 64 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

4.5.2 Test tailoring
The test /TC 3.4.3-1/ verifies that the tailoring process works by comparing two different variations of
the service. The Listing 4.20 shows the console transcript of the test. The instance with IP 169.254.0.148
was compiled with support for the append operation, while the instance with IP 169.254.0.149 does not.

telnet> open 169.254.0.148 11211
Trying 169.254.0.148...
Connected to 169.254.0.148.
Escape character is ’ˆ]’.
ˆ]

telnet> set crlf
Will send carriage returns as telnet <CR><LF>.
set key 0 9000 3
foo
STORED
append key 0 9000 3
bar
STORED
quit
Connection closed by foreign host.

telnet> open 169.254.0.149 11211
Trying 169.254.0.149...
Connected to 169.254.0.149.
Escape character is ’ˆ]’.
ˆ]

telnet> set crlf
Will send carriage returns as telnet <CR><LF>.
set key 0 9000 3
foo
STORED
append key 0 9000 3
bar
SERVER_ERROR Command not found
quit
Connection closed by foreign host.

Listing 4.20: Transcript of telnet feature test

As expected, the stripped-down version does no longer support the append command.

Test Case Date Result
/TC 3.4.3-1/ 2013-09-05 passed
/TC 3.4.3-2/ 2013-09-05 passed

4.6 Fault-Tolerant BPEL
The Fault-Tolerant BPEL subsystem improves the reliability of business processes. In order to test our
system, we compare the behaviour of our system with a standard implementation in different settings.

4.6.1 Fault-free operation on standard infrastructure
In the first test /TC 3.5.2-1/ , we checked that our test setup and all the services work using a standard,
unreplicated BPEL execution engine. For that purpose, a composed Web service implementing a business
process based on two other Web services was continously invoked. As shown in Listing 4.21, the system
responded at a steady rate.

1 cnt 0 time 0 avg 0 min 0 max 0
2 cnt 2 time 1809005 avg 904502 min 524850 max 1284154

TClouds D2.4.3 Page 65 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

3 cnt 2 time 1103189 avg 551594 min 550580 max 552608
4 cnt 2 time 918232 avg 459116 min 347719 max 570512
5 cnt 3 time 1099606 avg 366535 min 349491 max 376530
6 cnt 2 time 691408 avg 345704 min 333803 max 357604
7 cnt 3 time 1124240 avg 374746 min 313103 max 492569
8 cnt 3 time 1043065 avg 347688 min 331817 max 377833
9 cnt 2 time 988903 avg 494451 min 426454 max 562448
10 cnt 3 time 954588 avg 318196 min 279979 max 353793
11 cnt 3 time 880915 avg 293638 min 276972 max 310319

Listing 4.21: Excerpt from the log of the client invoking a standard BPEL process

The test produced the expected output.

4.6.2 Fault-free operation on FT-BPEL infrastructure
In test /TC 3.5.2-2/ , we ran the same business process on our replicated platform. The BPEL process
should work as on the standard system, which is confirmed by the output of our test scripts, as shown in
Listing 4.22.

1 cnt 0 time 0 avg 0 min 0 max 0
2 cnt 3 time 1730409 avg 576803 min 234435 max 1180931
3 cnt 2 time 627441 avg 313720 min 299943 max 327498
4 cnt 3 time 1610625 avg 536875 min 238131 max 978639
5 cnt 3 time 877224 avg 292408 min 272166 max 313658
6 cnt 4 time 1000240 avg 250060 min 224127 max 260122
7 cnt 4 time 1155592 avg 288898 min 256016 max 323967
8 cnt 3 time 907777 avg 302592 min 226311 max 389587
9 cnt 4 time 980416 avg 245104 min 224392 max 266277
10 cnt 3 time 879553 avg 293184 min 232451 max 343598
11 cnt 4 time 1107933 avg 276983 min 251387 max 308607

Listing 4.22: Excerpt from the log of the client invoking a replicated BPEL process

4.6.3 Crashed system present on standard infrastructure
Test /TC 3.5.2-3/ verifies that the standard business process is unable to operate in the presence of a
crashed node. We simulated this by killing the BPEL engine executing the BPEL process after some
time. The result can be seen in Listing 4.23.

30 cnt 4 time 1463083 avg 365770 min 247543 max 609679
31 cnt 3 time 980096 avg 326698 min 254185 max 466932
32 cnt 4 time 1024862 avg 256215 min 242936 max 276280

javax.xml.ws.WebServiceException: java.net.ConnectException: Connection refused
at com.sun.xml.internal.ws.transport.http.client.HttpClientTransport.

readResponseCodeAndMessage(HttpClientTransport.java:201)
at com.sun.xml.internal.ws.transport.http.client.HttpTransportPipe.process(

HttpTransportPipe.java:151)
at com.sun.xml.internal.ws.transport.http.client.HttpTransportPipe.processRequest(

HttpTransportPipe.java:83)
at com.sun.xml.internal.ws.transport.DeferredTransportPipe.processRequest(

DeferredTransportPipe.java:78)
at com.sun.xml.internal.ws.api.pipe.Fiber.__doRun(Fiber.java:587)
at com.sun.xml.internal.ws.api.pipe.Fiber._doRun(Fiber.java:546)
at com.sun.xml.internal.ws.api.pipe.Fiber.doRun(Fiber.java:531)
at com.sun.xml.internal.ws.api.pipe.Fiber.runSync(Fiber.java:428)
at com.sun.xml.internal.ws.client.Stub.process(Stub.java:211)
at com.sun.xml.internal.ws.client.sei.SEIStub.doProcess(SEIStub.java:124)
at com.sun.xml.internal.ws.client.sei.SyncMethodHandler.invoke(SyncMethodHandler.java

:98)
at com.sun.xml.internal.ws.client.sei.SyncMethodHandler.invoke(SyncMethodHandler.java

:78)
at com.sun.xml.internal.ws.client.sei.SEIStub.invoke(SEIStub.java:107)
at sun.proxy.$Proxy20.multiplyadd(Unknown Source)
at eu.tclouds.rbpel.demo.calculator.CalculatorProxy.invoke(CalculatorProxy.java:25)
at eu.tclouds.rbpel.demo.ServiceProxy.invoke(ServiceProxy.java:41)

TClouds D2.4.3 Page 66 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

at eu.tclouds.rbpel.demo.ThroughputClientBase$Worker.invokeService(
ThroughputClientBase.java:268)

at eu.tclouds.rbpel.demo.ThroughputClientBase$Worker.run(ThroughputClientBase.java
:219)

Caused by: java.net.ConnectException: Connection refused
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:327)
at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:193)
at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:180)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:384)
at java.net.Socket.connect(Socket.java:546)
at java.net.Socket.connect(Socket.java:495)
at sun.net.NetworkClient.doConnect(NetworkClient.java:178)
at sun.net.www.http.HttpClient.openServer(HttpClient.java:409)
at sun.net.www.http.HttpClient.openServer(HttpClient.java:530)
at sun.net.www.http.HttpClient.parseHTTPHeader(HttpClient.java:761)
at sun.net.www.http.HttpClient.parseHTTP(HttpClient.java:633)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java

:1162)
at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:397)
at com.sun.xml.internal.ws.transport.http.client.HttpClientTransport.

readResponseCodeAndMessage(HttpClientTransport.java:198)
... 17 more

33 cnt 0 time 0 avg 0 min 0 max 0
34 cnt 0 time 0 avg 0 min 0 max 0
33 cnt 0 time 0 avg 0 min 0 max 0
34 cnt 0 time 0 avg 0 min 0 max 0
35 cnt 0 time 0 avg 0 min 0 max 0
36 cnt 0 time 0 avg 0 min 0 max 0
37 cnt 0 time 0 avg 0 min 0 max 0
38 cnt 0 time 0 avg 0 min 0 max 0
39 cnt 0 time 0 avg 0 min 0 max 0
40 cnt 0 time 0 avg 0 min 0 max 0
41 cnt 0 time 0 avg 0 min 0 max 0
42 cnt 0 time 0 avg 0 min 0 max 0
43 cnt 0 time 0 avg 0 min 0 max 0
44 cnt 0 time 0 avg 0 min 0 max 0

Listing 4.23: Excerpt from the log of the client invoking a standard BPEL process and an
induced crash at about t = 30

Once the BPEL Engine had become unavailable, the client was no longer able to invoke the BPEL
process successfully. This is the expected result for the standard BPEL configuration.

4.6.4 Crashed system present on FT-BPEL infrastructure
Our replicated BPEL subsystem should be able to work despite a crashed node, so we checked with the
test case /TC 3.5.2-4/ . The console output is shown in Listing 4.24.

29 cnt 4 time 1024179 avg 256044 min 231907 max 276157
30 cnt 5 time 1135744 avg 227148 min 195802 max 251975
31 cnt 4 time 975627 avg 243906 min 195701 max 280056
32 cnt 3 time 808294 avg 269431 min 235970 max 287943
33 cnt 4 time 1031234 avg 257808 min 236093 max 280000
34 cnt 5 time 1196258 avg 239251 min 199497 max 276057
35 cnt 3 time 860422 avg 286807 min 275966 max 300469
36 cnt 4 time 980019 avg 245004 min 179567 max 328733

˜ 2013-09-05 16:14:21.241 OP-f4fff92e-6954-43dc-9ebe-453805fe656b:
Error while invoking proxy b842d7e7-6832-4383-813e-2346a930e9bc for
request 717b3c7c75084489_82be096542380310/000136
javax.xml.ws.WebServiceException:
java.util.concurrent.ExecutionException:
javax.xml.ws.WebServiceException:
java.net.ConnectException: Connection refused

˜ 2013-09-05 16:14:21.364 OP-f4fff92e-6954-43dc-9ebe-453805fe656b:
Error while invoking proxy b842d7e7-6832-4383-813e-2346a930e9bc for
request 717b3c7c75084489_82be096542380310/000137
javax.xml.ws.WebServiceException:
java.util.concurrent.ExecutionException:

TClouds D2.4.3 Page 67 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

com.sun.xml.internal.ws.client.ClientTransportException:
HTTP transport error: java.net.ConnectException: Connection refused
37 cnt 2 time 544170 avg 272085 min 232272 max 311897
38 cnt 0 time 0 avg 0 min 0 max 0
39 cnt 0 time 0 avg 0 min 0 max 0
40 cnt 0 time 0 avg 0 min 0 max 0
41 cnt 0 time 0 avg 0 min 0 max 0
42 cnt 3 time 5479356 avg 1826452 min 252600 max 4939554
43 cnt 4 time 1064764 avg 266191 min 234435 max 281887
44 cnt 4 time 1067688 avg 266922 min 239352 max 282607
45 cnt 4 time 1003485 avg 250871 min 236491 max 275720
46 cnt 3 time 904613 avg 301537 min 275201 max 325262
47 cnt 3 time 855932 avg 285310 min 272891 max 307952

Listing 4.24: Excerpt from the log of the client invoking a replicated BPEL process and an
induced crash at about t = 35

As expected, the service was able to resume normal operation shortly after detecting the crashed
node.

Test Case Date Result
/TC 3.5.2-1/ 2013-09-05 passed
/TC 3.5.2-2/ 2013-09-05 passed
/TC 3.5.2-3/ 2013-09-05 passed
/TC 3.5.2-4/ 2013-09-05 passed

4.7 SAVE Subsystem

4.7.1 Discovery
We successfully tested the discovery with a small test infrastructure running OpenStack. The underly-
ing virtualization management is based on libvirt, which was already supported and tested previously
in SAVE. Furthermore, we successfully tested and operated the discovery with a mid-sized virtualized
infrastructure based on VMware that was part of a SAVE case-study (cf. D2.3.1 [C+11], Section 8.7).

4.7.2 Analysis Unit Testing
The automated unit-testing verified the successful translation of discovery data samples of different virtu-
alization management technologies into our unified graph-based model. Figure 4.5 shows the successful
test-run.

Figure 4.5: Successful JUnit Test Run.

Furthermore, we successfully tested our analysis backend that employs the Groove graph transfor-
mation tool (cf. D2.3.4, Chapter 2) as shown in Fig 4.6.

TClouds D2.4.3 Page 68 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Figure 4.6: Successful Groove Analysis Unit Test Run.

4.7.3 Analysis System Testing
We successfully tested the overall system in a case-study of a mid-sized production infrastructure (D2.3.1,
Section 8.7), as well as a analysis of both a known-good and known-bad infrastructure that SAVE identi-
fied as such (D2.3.2, Section 4.7).

TClouds D2.4.3 Page 69 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Part III

Appendices

TClouds D2.4.3 Page 70 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Appendix A

Software details of the prototypes

Chapter Author: Gianluca Ramunno (POL)

The subsystems for single cloud of TClouds Platform v2 have been delivered as companion tarball(s) of
D2.1.4-D2.3.3 [BS+13]. The document part of such deliverable collects the instructions for installing/-
configuring/using the related subsystems. The present deliverable, instead, collects all subsystems de-
veloped in Activity 2 throughout the project, forming the TClouds Platform v2.1. The related documen-
tation is either the one included in D2.1.4-D2.3.3 [BS+13] or, if not included or not up-to-date anymore,
is included in the corresponding tarballs.

TClouds D2.4.3 Page 71 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Appendix B

Subsystems’ code availability

Chapter Author: Gianluca Ramunno (POL)

Table B.1 reports the code availability for each subsystem.

TClouds subsystem Code availability
Resource-efficient BFT (CheapBFT) Source code in D2.4.3 tarball (*)
Simple Key/Value Store (Tailored memcached) Source code in D2.4.3 tarball (*) (**)
Cryptography as a Service (CaaS) Object code in D2.4.3 tarball (*)
TrustedServer Confidential
Log Service Source code in D2.4.3 tarball (*) (***)
State Machine Replication (BFT-SMaRt) Source code in D2.4.3 tarball (*) (****)
Fault-tolerant Workflow Execution (FT-BPEL) Source code in D2.4.3 tarball (*) (**)
Resilient Object Storage (DepSky) Source code in D2.4.3 tarball (*) (*****)
Confidentiality Proxy for S3 Confidential
Access Control as a Service (ACaaS) Source code in D2.4.3 tarball (*)
TrustedObjects Manager (TOM) Confidential
Trusted Management Channel Confidential
Ontology-based Reasoner/Enforcer (Enforcer) Source code in D2.4.3 tarball (*) (***)
Automated Validation (SAVE) Confidential
Remote Attestation Service Source code in D2.4.3 tarball (*) (***)
Cloud-of-Clouds File System (C2FS) Source code in D2.4.3 tarball (*)
Fault-tolerant Relational DB (SteelDB) Source code in D2.4.3 tarball (*)
Key-Value Store (KV Store) Source code in D2.4.3 tarball (*)

(*) D2.4.3 tarball also includes binary packages for Ubuntu 12.04.3 LTS Linux distribution generated
from source code and also source code of the original OpenStack and Open Attestation, existing
external software. They have been included for ease of installation (and for rebuilding packages from
source code, if wanted). The packages for OpenStack (also including TClouds patches) have been
automatically generated by the Jenkins platform (see Section 4.5 and Appendix A of D2.4.2 [S+12a]).
For details and installation instructions see the deliverable D2.1.4-D2.3.3 [BS+13] and the README file
included in the root folder of the tarball.
(**) Also available from
http://www.ibr.cs.tu-bs.de/projects/tclouds/download/
(***) Also available from http://security.polito.it/tclouds/
(****) Also available from http://code.google.com/p/bft-smart

(*****) Also available from http://code.google.com/p/depsky/

Table B.1: List of TClouds subsystems and code availability

TClouds D2.4.3 Page 72 of 78

http://www.ibr.cs.tu-bs.de/projects/tclouds/download/
http://security.polito.it/tclouds/
http://code.google.com/p/bft-smart
http://code.google.com/p/depsky/

D2.4.3 – Final Reference Platform and Test Case Specification

Appendix C

Evolution of TClouds platform and integra-
tion of subsystems

Chapter Author: Gianluca Ramunno (POL)

The concept of platform in TClouds evolved throughout the project towards the result described in
this document, particularly in Chapter 2. There has been a parallel evolution of the pieces of the platform
developed by the partners and called subsystems: the set originally conceived in Year 1 evolved from 15
to 18 subsystems in Year 3. They were developed independently during Year 1 and mostly integrated in
Year 2 into three prototypes (Trustworthy OpenStack, Trustedlnfrastructure Cloud and Cloud-of-Clouds)
framed in a single scenario called TClouds platform TClouds v1.

During Year 3 the concept of TClouds platform has been improved from the original plan written in
Annex I – a fully integrated platform with a unified API – to an overall richer framework, the TClouds
platform v2.1, offering both Infrastructure (IaaS) as well as Platform (PaaS) services. As in commercial
cloud-service ecosystems (e.g. Amazon Web Services, Windows Azure, . . .), each component is a build-
ing block that can be selected according to the applications’ needs. In particular, all TClouds subsystems
in the platform v2.1 are arranged in logical layers. The evolution of the two prototypes presented in Year
2 (Trustworthy OpenStack and Trustedlnfrastructure Cloud) consists now of two different secure alterna-
tives (with respect to the commodity clouds) for the IaaS layer. With these two alternative infrastructure
prototypes we can cover the needs of a wide range of application scenarios from private or community
clouds with high security demands to large-scale public clouds.

The evolution of the third prototype presented in Year 2 (Cloud-of-Clouds) is the new Cloud-of-
Clouds File System (C2FS) subsystem standing at the Services layer. All other subsystems are arranged
partly in the Middleware layer, mostly acting as building blocks for the remaining subsystems standing
at the upper Services layer. The Middleware and Services layers together resemble to the PaaS layer as
defined by NIST [MG11]: the subsystems standing on these layers are platform components that can be
used by the applications. Therefore the TClouds Platform v2.1 offers to the applications a set of proto-
types and components to be tailored according to their needs: an application can be built on top of one
selected IaaS infrastructure and can use a selection of the subsystems at the PaaS layer according to its
security requirements. The validity of this approach is actually demonstrated through the two Activity 3
benchmark scenarios (Workpackage 3.1 Home Healthcare and Workpackage 3.2 Smart Lighting System)
that will be presented at the final review running on two tailored instantiations of the TClouds platform
v2.1.

The evolution of the subsystems throughout the project, including their positioning in the TClouds
Platform and their usage within the two benchmark scenarios, is thoroughly described in Table C.1.

TClouds D2.4.3 Page 73 of 78

D
2.4.3

–
FinalR

eference
Platform

and
TestC

ase
Specification

Year 2 Year 3
TClouds Platform v1 TClouds Platform v2.x

TClouds subsystem TClouds prototype TClouds prototype TClouds Platform
layer [1]

Resource-efficient BFT (CheapBFT) Trustworthy OpenStack [platform component] Middleware (PaaS)
Simple Key/Value Store (tailored memcached) N/A (but planned) [platform component] Services (PaaS)
Secure Block Storage (SBS) [2]
Secure VM Instances [2]
Cryptography as a Service (CaaS) [2] Trustworthy OpenStack Trustworthy OpenStack Infrastructure (IaaS)
TrustedServer TrustedInfrastructure Cloud TrustedInfrastructure Cloud Infrastructure (IaaS)

Log Service Trustworthy OpenStack Trustworthy OpenStack
Infrastructure (IaaS)
Service (PaaS) [8]

State Machine Replication (BFT-SMaRt) Cloud-of-Clouds [3] [platform component] Middleware (PaaS)
Fault-tolerant Workflow Execution (FT-BPEL) N/A (but planned) [platform component] Middleware (PaaS)
Resilient Object Storage (DepSky) Cloud-of-Clouds [3] [platform component] Middleware (PaaS)

Confidentiality Proxy for S3 N/A (but planned)
[platform component] [7]
TrustedInfrastructure Cloud

Services (PaaS)

Access Control as a Service (ACaaS) Trustworthy OpenStack Trustworthy OpenStack Infrastructure (IaaS)
TrustedObjects Manager (TOM) TrustedInfrastructure Cloud TrustedInfrastructure Cloud Infrastructure (IaaS)
Trusted Management Channel TrustedInfrastructure Cloud TrustedInfrastructure Cloud Infrastructure (IaaS)
Ontology-based Reasoner/Enforcer [standalone] Trustworthy OpenStack Infrastructure (IaaS)
Automated Validation (SAVE) [standalone] Trustworthy OpenStack Infrastructure (IaaS)

Remote Attestation Service
Trustworthy OpenStack
(not originally planned) [6]

Trustworthy OpenStack Infrastructure (IaaS)

Cloud-of-Clouds File System (C2FS) [3] N/A (not originally planned) [platform component] Services (PaaS)
Fault-tolerant Relational DB (SteelDB) [4] N/A (not originally planned) [platform component] Services (PaaS)
Key-Value Store (KV Store) [5] N/A (not originally planned) [platform component] Services (PaaS)

[1] “Layer” to be intended according to the TClouds Platform architecture described in Section 2.4 and depicted in Figure 2.3.
[2] Secure Block Storage (SBS) and Secure VM Instances during the second year have been combined to form Cryptography as a Service.
[3] Year 2 Cloud-of-Clouds prototype evolved into the Year 3 new C2FS subsystem, built on top of BFT-SMaRt and DepSky subsystems.
[4] Built on top of BFT-SMaRt.
[5] Built on top of BFT-SMaRt.
[6] It was added in substitution of the ”reasoner” part of the Ontology-based Reasoner/Enforcer
[7] Confidentiality Proxy for S3 is strictly speaking one Service, but it is integrated in TrustedInfrastructure Cloud as for it concerns the transparent

encryption setup within a TVD.
[8] Log Service is used at the Infrastructure layer in Trustworthy OpenStack but it can be used as Service for applications.

Table C.1: List of TClouds subsystems and their evolution in the frame of TClouds Platform

T
C

louds
D

2.4.3
Page

74
of78

D2.4.3 – Final Reference Platform and Test Case Specification

Appendix D

Low-level APIs

Companion document of this deliverable is the report R2.4.2.4 [S+13b] that includes the low-level APIs
of the Activity 2 subsystems; because of the document size, such report is delivered as a separate zip
archive containing PDF files to be printed only if necessary.

TClouds D2.4.3 Page 75 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

Bibliography

[A+13] Marco Abitabile et al. TClouds – D3.3.4 Final Report On Evaluation Activities. Deliverable
D3.3.4, TClouds Consortium, October 2013.

[Abi13] Marco Abitabile. TClouds – D3.3.3 Validation Protocol and Schedule for the Smart Power
Grid and Home Health Use Cases. Deliverable D3.3.3-v2, TClouds Consortium, May 2013.

[B+13a] Alysson Bessani et al. TClouds – D2.2.4 Adaptive Cloud-of-Clouds Architecture, Services
and Protocols. Deliverable D2.2.4, TClouds Consortium, September 2013.

[B+13b] Sören Bleikertz et al. TClouds – D2.3.4 Automation and Evaluation of Security Configura-
tion and Privacy Management. Deliverable D2.3.4, TClouds Consortium, September 2013.

[BAB+12] Alysson Bessani, Imad M. Abbadi, Sven Bugiel, Emanuele Cesena, Mina Deng, Michael
Grone, Ninja Marnau, Stefan Nurnberger, Marcelo Pasin, and Norbert Schirmer. Privacy
and Resilience for Internet-scale Critical Infrastructures, 2012.

[BACF08] Alysson N. Bessani, Eduardo P. Alchieri, Miguel Correia, and Joni S. Fraga. DepSpace: a
Byzantine fault-tolerant coordination service. In Proc. of the 3rd ACM European Systems
Conference – EuroSys’08, pages 163–176, April 2008.

[BBI+13] Sören Bleikertz, Sven Bugiel, Hugo Ideler, Stefan Nürnberger, and Ahmad-Reza Sadeghi.
Client-controlled Cryptography-as-a-Service in the Cloud. In 11th International Conference
on Applied Cryptography and Network Security (ACNS 2013), June 2013.

[BCQ+13] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando Andre, and Paulo Sousa.
DepSky: Dependable and secure storage in cloud-of-clouds. ACM Transactions on Storage,
2013.

[BDH+12] Johannes Behl, Tobias Distler, Florian Heisig, Rüdiger Kapitza, and Matthias Schunter.
Providing Fault-tolerant Execution of Web-service-based Workflows within Clouds. In Pro-
ceedings of the 2nd International Workshop on Cloud Computing Platforms (CloudCP ’12),
2012.

[BGJ+05] Anthony Bussani, John Linwood Griffin, Bernhard Jansen, Klaus Julisch, Genter Karjoth,
Hiroshi Maruyama, Megumi Nakamura, Ronald Perez, Matthias Schunter, Axel Tanner,
and et al. Trusted virtual domains: Secure foundations for business and it services. Science,
23792, 2005.

[BGSE11] Sören Bleikertz, Thomas Groß, Matthias Schunter, and Konrad Eriksson. Automated infor-
mation flow analysis of virtualized infrastructures. In Proc. of ESORICS’11, 2011.

[BPN+11] Sven Bugiel, Thomas Pöppelmann, Stefan Nürnberger, Ahmad-Reza Sadeghi, and Thomas
Schneider. Amazonia: When elasticity snaps back. In 18th ACM Conference on Computer
and Communications Security. ACM, Oct 2011.

[BS+13] Sören Bleikertz, Norbert Schirmer, et al. TClouds – D2.1.4/D2.3.3 Proof of Concept Infras-
tructure / Implementation of Security Configuration and Policy Management. Deliverable
D2.1.4/D2.3.3, TClouds Consortium, April 2013.

TClouds D2.4.3 Page 76 of 78

D2.4.3 – Final Reference Platform and Test Case Specification

[BSF+13] Alysson Bessani, Marcel Santos, Joao Felix, Nuno Neves, and Miguel Correia. On the
efficiency of durable state machine replication. In Proc. of USENIX ATC’13, 2013.

[C+11] Christian Cachin et al. D2.3.1 - Requirements, Analysis, and Design of Security Manage-
ment. Technical report, TClouds Consortium, October 2011. TClouds deliverable.

[CRS+11] Emanuele Cesena, Gianluca Ramunno, Roberto Sassu, Davide Vernizzi, and Antonio Lioy.
On scalability of remote attestation. In Proc of the ACM STC ’11. ACM, Dec 2011.

[CS11] C. Cachin and M. Schunter. A cloud you can trust. IEEE Spectrum, 48, 2011.

[D+13] Mina Deng et al. TClouds – D3.1.5 Proof of concept for home healthcare. Deliverable
D3.1.5, TClouds Consortium, October 2013.

[FR11] Miguel Correia Francisco Rocha, Salvador Abreu. The final frontier: Confidentiality and
privacy in the cloud. IEEE Computer, 44(9), 2011.

[Gel85] David Gelernter. Generative communication in linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, January 1985.

[GRP11] Rui Garcia, Rodrigo Rodrigues, and Nuno Preguiça. Efficient middleware for Byzantine
fault tolerant database replication. In EuroSys’11, 2011.

[GVM00] Garth A. Gibson and Rodney Van Meter. Network attached storage architecture. Commu-
nications of the ACM, 43(11):37–45, November 2000.

[KS12] Anil Kumar and Jerry St.Clair. A Unit Testing Framework for C. Retrieved from: http:
//cunit.sourceforge.net/, September 2012.

[Lev12] Peter Levart. FUSE-J: A Java binding for FUSE. Retrieved from: http://
sourceforge.net/projects/fuse-j/, 2012.

[MG11] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. NIST Special
Publication 800-145, September 2011.

[Mil12] Stewart Miles. A lightweight library to simplify and generalize the process of writ-
ing unit tests for C applications. Retrieved from: http://code.google.com/p/
cmockery/, September 2012.

[MMHJ11] M. Mahjoub, A. Mdhaffar, R.B. Halima, and M. Jmaiel. A comparative study of the current
cloud computing technologies and offers. In Network Cloud Computing and Applications
(NCCA), 2011 First International Symposium on, pages 131–134, 2011.

[MT09] Di Ma and Gene Tsudik. A new approach to secure logging. Trans. Storage, 5:2:1–2:21,
March 2009.

[NF12] Gergely Nagy and Zoltán Fried. CEE-enhanced syslog() API. Retrieved form: https:
//github.com/deirf/libumberlog, September 2012.

[OvT12] Open vSwitch Team. Open vSwitch. Retrieved form: http://openvswitch.org/,
September 2012.

[Per13] Nuno Pereira. TClouds – D3.2.5 Smart Lighting System Final Report. Deliverable D3.2.5,
TClouds Consortium, October 2013.

[PVP12] Dana Petcu and Jos Luis Vzquez-Poletti. European Research Activities in Cloud Computing.
Cambridge Scholars Publishing, United Kingdom, 2012.

TClouds D2.4.3 Page 77 of 78

http://cunit.sourceforge.net/
http://cunit.sourceforge.net/
http://sourceforge.net/projects/fuse-j/
http://sourceforge.net/projects/fuse-j/
http://code.google.com/p/cmockery/
http://code.google.com/p/cmockery/
https://github.com/deirf/libumberlog
https://github.com/deirf/libumberlog
http://openvswitch.org/

D2.4.3 – Final Reference Platform and Test Case Specification

[R. 12] R. Kapitza et. al. CheapBFT: resource-efficient Byzantine fault tolerance. In EuroSys’12,
2012.

[R+13] Gianluca Ramunno et al. TClouds – D2.4.3 Final Reference Platform and Test Case Speci-
fication. Deliverable D2.4.3, TClouds Consortium, October 2013.

[S+12a] Roberto Sassu et al. TClouds – D2.4.2 Initial Component Integration, Final API Specifi-
cation, and First Reference Platform. Deliverable D2.4.2, TClouds Consortium, October
2012.

[S+12b] Norbert Schirmer et al. TClouds – D2.1.2 Preliminary Description of Mechanisms and
Components for Single Trusted Clouds. Deliverable D2.1.2, TClouds Consortium, Septem-
ber 2012.

[S+13a] Norbert Schirmer et al. TClouds – D2.1.5 Final Report on Requirements, Architecture, and
Components for Single Trusted Clouds. Deliverable D2.1.5, TClouds Consortium, Septem-
ber 2013.

[S+13b] Norbert Schirmer et al. TClouds – R2.4.2.4 Final low-level architecture and private inter-
faces specification. Internal Report R2.4.2.4, TClouds Consortium, July 2013.

[Sch90] Fred B. Schneider. Implementing fault-tolerant service using the state machine aproach: A
tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

[SK99a] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics. ACM
Trans. Information Systems Security, 2(2):159–176, 1999.

[SK99b] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics. ACM
Trans. Inf. Syst. Secur., 2:159–176, May 1999.

[SK13] Matthias Schunter and Klaus-Michael Koch. TClouds – Privacy and Resilience for Internet-
scale Critical Infrastructures. Technical Annex I - ”Description of Work” - v4 Grant Agree-
ment No. 257243, Technikon GmbH, Villach, AT, March 2013.

[VBP12] Paulo Verissimo, Alysson Bessani, and Marcelo Pasin. The TClouds architecture: Open
and resilient cloud-of-clouds computing. In Proc. 2nd Int. Workshop on Dependability of
Clouds, Data Centers and Virtual Computing Environments (DCDV’12), 2012.

[VS13] Paulo Viegas and Paulo Santos. TClouds – D3.2.4 Smart Lighting System Final Prototype.
Deliverable D3.2.4, TClouds Consortium, September 2013.

TClouds D2.4.3 Page 78 of 78

	Introduction
	TClouds — Trustworthy Clouds
	Activity 2 — Trustworthy Internet-scale Computing Platform
	Workpackage 2.4 — Architecture and Integrated Platform
	Deliverable 2.4.3 — Final Reference Platform and Test Case Specification

	I TClouds Platform v2
	The TClouds Platform Concept, Architecture and Instantiations
	Introduction
	Concept of platform
	Amazon AWS architecture
	Example application: theneeds

	The TClouds Platform Architecture
	Infrastructure
	Middleware
	Services

	Platform Instantiations

	II Testing
	Final test plans for subsystems/prototypes
	Introduction
	TrustedInfrastructure Cloud
	Test methodology/strategy
	Test cases

	Security Assurance of Virtualized Environments (SAVE)
	Test methodology/strategy
	Test cases

	Tailored memcached service
	Short subsystem intro
	Test methodology/strategy
	Test cases

	Fault-tolerant Workflow Execution (FT-BPEL)
	Test methodology/strategy
	Test cases

	Cryptography as a Service
	Test methodology/strategy
	Test cases

	Access Control as a Service (ACaaS)
	Test methodology/strategy
	Test cases

	BFT-SMaRt
	Test methodology/strategy
	Test cases
	Demos

	Resilient Object Storage (DepSky)
	Test methodology/strategy
	Test cases

	LogService
	Test methodology/strategy
	Test execution

	Remote Attestation Service
	Test methodology/strategy
	Test cases

	Ontology-based Reasoner-Enforcer
	Test methodology/strategy
	Test cases

	Test results
	Trustworthy OpenStack Prototype
	LogService
	Remote Attestation Service
	Cryptography as a Service
	ACaaS
	Ontology-based Reasoner/Enforcer

	TrustedInfrastructure Cloud Prototype
	BFT-SMaRt
	Resilient Object Storage (DepSky)
	Tailored Memcached
	Sevice deployment
	Test tailoring

	Fault-Tolerant BPEL
	Fault-free operation on standard infrastructure
	Fault-free operation on FT-BPEL infrastructure
	Crashed system present on standard infrastructure
	Crashed system present on FT-BPEL infrastructure

	SAVE Subsystem
	Discovery
	Analysis Unit Testing
	Analysis System Testing

	III Appendices
	Software details of the prototypes
	Subsystems' code availability
	Evolution of TClouds platform and integration of subsystems
	Low-level APIs
	Bibliography

